日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x+
          1x

          (1)求函數(shù)f(x)的定義域.
          (2)判斷函數(shù)的奇偶性,并加以證明;
          (3)用定義證明f(x)在(0,1)上是減函數(shù).
          分析:(1)求函數(shù)f(x)的定義域,可令函數(shù)解析式的分母不為0,即可得到所求函數(shù)的定義域;
          (2)判斷函數(shù)的奇偶性,要用定義法,由函數(shù)解析式研究f(-x)與f(x)的關(guān)系,即可證明出函數(shù)的性質(zhì);
          (3)此函數(shù)是一個減函數(shù),由定義法證明要先任取定義域內(nèi)兩個實數(shù)x1,x2且x1<x2,再兩函數(shù)值作差,判斷差的符號,再由定義得出結(jié)論.
          解答:解:(1)由題意若函數(shù)f(x)=x+
          1
          x
          的解析式有意義
          自變量須滿足x≠0,
          所以函數(shù)的定義域是(-∞,0)∪(0,+∞)
          (2)此函數(shù)是一個奇函數(shù),證明如下
          由(1)知函數(shù)的定義域關(guān)于原點(diǎn)對稱,
          又∵f(-x)=-x-
          1
          x
          =-(x+
          1
          x
          )=-f(x),
          ∴函數(shù)是奇函數(shù);
          (3)此函數(shù)在(0,1)上是減函數(shù),證明如下:
          任取x1,x2∈(0,1)且x1<x2,
          ∴x1-x2<0,x1•x2<1,x1•x2-1<0
          f(x1)-f(x2)=(x1+
          1
          x1
          )-(x2+
          1
          x2
          )=(x1-x2)(
          x1x2-1
          x1x2
          )>0
          即有f(x1)-f(x2)>0,
          即f(x1)>f(x2
          故函數(shù)在(0,1)上是減函數(shù)
          點(diǎn)評:本題考查了求函數(shù)的定義域,對數(shù)的運(yùn)算法則,判斷函數(shù)的奇偶性,定義法證明函數(shù)單調(diào)性,正確解答本題,關(guān)鍵是熟練記憶函數(shù)的性質(zhì)及這些性質(zhì)判斷的方法,其中判斷函數(shù)的單調(diào)性是本題的難點(diǎn),定義法判斷函數(shù)的單調(diào)性,其步驟是;取,作差,判號,得出結(jié)論,其中判號這一步易疏漏,切記
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是(  )
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案