【題目】已知動點M(x,y)滿足,點M的軌跡為曲線E.
(1)求E的標準方程;
(2)過點F(1,0)作直線交曲線E于P,Q兩點,交軸于R點,若
,證明:
為定值.
【答案】(1);(2)-4.
【解析】分析:(Ⅰ)由,根據(jù)橢圓的定義可得點
的軌跡是以
為焦點的橢圓,可求得
,從而可得曲線
的方程;(II)設
,由
,點
在曲線
上可得
…,①同理可得
…,②,由①②可得
是方程
的兩個根,
為定值
.
詳解:(Ⅰ)由,
可得點M(x,y)到定點A(﹣1,0),B(1,0)的距離等于之和等于.
且AB,所以動點N的軌跡是以C(﹣1,0),A(1,0)為焦點的橢圓,
且長軸長為,焦距2c=2,所以,c=1,b=1,曲線E的方程為:
;
(Ⅱ)法1:設P(x1,y1),Q(x2,y2),R(0,y0),
由,(x1,y1﹣y0)=λ1(1﹣x1,﹣y1),∴
,
∵過點F(1,0)作直線l交曲線E于P,∴,
∴…①
同理可得:…②
由①②可得λ1、λ2是方程x2+4x+2﹣2y02=0的兩個根,∴λ1+λ2為定值﹣4.
法2:依題意得的斜率一定存在,設斜率為k,
則直線方程為代入橢圓方程得:
設,則
,
由得:
得
同理得:
則為定值。
科目:高中數(shù)學 來源: 題型:
【題目】已知點F(1,0),點A是直線l1:x=﹣1上的動點,過A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點P. (Ⅰ)求點P的軌跡C的方程;
(Ⅱ)若點M,N是直線l1上兩個不同的點,且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點M(x1 , f(x1))和點N(x2 , g(x2))分別是函數(shù)f(x)=ex﹣ x2和g(x)=x﹣1圖象上的點,且x1≥0,x2>0,若直線MN∥x軸,則M,N兩點間的距離的最小值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的分別為a,b,c,且acosB=(3c﹣b)cosA.
(1)若asinB=2 ,求b;
(2)若a=2 ,且△ABC的面積為
,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】北京某附屬中學為了改善學生的住宿條件,決定在學校附近修建學生宿舍,學?倓辙k公室用1000萬元從政府購得一塊廉價土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費用提高0.02萬元,已知建筑第5層樓房時,每平方米建筑費用為0.8萬元.
(1)若學生宿舍建筑為層樓時,該樓房綜合費用為
萬元,綜合費用是建筑費用與購地費用之和),寫出
的表達式;
(2)為了使該樓房每平方米的平均綜合費用最低,學校應把樓層建成幾層?此時平均綜合費用為每平方米多少萬元?
【答案】(1);(2)學校應把樓層建成
層,此時平均綜合費用為每平方米
萬元
【解析】
由已知求出第
層樓房每平方米建筑費用為
萬元,得到第
層樓房建筑費用,由樓房每升高一層,整層樓建筑費用提高
萬元
,然后利用等差數(shù)列前
項和求建筑
層樓時的綜合費用
;
設樓房每平方米的平均綜合費用為
,則
,然后利用基本不等式求最值.
解:由建筑第5層樓房時,每平方米建筑費用為
萬元,
且樓房每升高一層,整層樓每平方米建筑費用提高萬元,
可得建筑第1層樓房每平方米建筑費用為:萬元.
建筑第1層樓房建筑費用為:萬元
.
樓房每升高一層,整層樓建筑費用提高:萬元
.
建筑第x層樓時,該樓房綜合費用為:.
;
設該樓房每平方米的平均綜合費用為
,
則:,
當且僅當,即
時,上式等號成立.
學校應把樓層建成10層,此時平均綜合費用為每平方米
萬元.
【點睛】
本題考查簡單的數(shù)學建模思想方法,訓練了等差數(shù)列前n項和的求法,訓練了利用基本不等式求最值,是中檔題.
【題型】解答題
【結(jié)束】
20
【題目】已知.
(1)求函數(shù)的最小正周期和對稱軸方程;
(2)若,求
的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知.
(1)求函數(shù)的最小正周期和對稱軸方程;
(2)若,求
的值域.
【答案】(1)對稱軸為,最小正周期
;(2)
【解析】
(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進行化簡得到,由周期公式和對稱軸公式可得答案;(2)由x的范圍得到
,由正弦函數(shù)的性質(zhì)即可得到值域.
(1)
令,則
的對稱軸為
,最小正周期
;
(2)當時,
,
因為在
單調(diào)遞增,在
單調(diào)遞減,
在取最大值,在
取最小值,
所以,
所以.
【點睛】
本題考查正弦函數(shù)圖像的性質(zhì),考查周期性,對稱性,函數(shù)值域的求法,考查二倍角公式以及輔助角公式的應用,屬于基礎題.
【題型】解答題
【結(jié)束】
21
【題目】已知等比數(shù)列的前
項和為
,公比
,
,
.
(1)求等比數(shù)列的通項公式;
(2)設,求
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x2+ax+a). (I)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(1)求a的值和函數(shù)f(x)的定義域;
(2)解不等式f(-m2+2m-1)+f(m2+3)<0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增大,下表是該地一農(nóng)業(yè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表:
為了研究方便,工作人員將上表的數(shù)據(jù)進行了處理,,得到下表:
(1)求關(guān)于
的線性回歸方程;
(2)求關(guān)于
的線性回歸方程;
(3)用所求回歸方程預測,到2020年底,該地儲蓄存款額大約可達多少?
(附:線性回歸方程:,
,
)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com