日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義域為(-∞,0)∪(0,+∞)的偶函數(shù)g(x)在(-∞,0)內(nèi)為單調(diào)遞減函數(shù),且g(x•y)=g(x)+g(y)對任意的x,y都成立,g(2)=1.
          (1)證明g(x)在(0,+∞)內(nèi)為單調(diào)遞增函數(shù)
          (2)求g(4)的值;
          (3)求滿足條件g(x)>g(x+1)+2的x的取值范圍.
          分析:(1)設(shè)0<x1<x2,則0>-x1>-x2,利用偶函數(shù)的關(guān)系式和單調(diào)性進(jìn)行轉(zhuǎn)化,得到g(x1)<g(x2),即得證;
          (2)由g(x•y)=g(x)+g(y)對任意的x,y都成立及g(2)=1,取x=y=2可求g(4);  
          (3)結(jié)合(2)和已知把不等式化為g(x)>g[4(x+1)],g(x)為偶函數(shù),且在(-∞,0)為單調(diào)遞減函數(shù),可得g(x)在(0,+∞)為單調(diào)遞增函數(shù).從而可得|x|>4|x+1|,|x+1|≠0,解不等式可求x的取值范圍.
          解答:解:(1)設(shè)0<x1<x2,則0>-x1>-x2,
          ∵g(x)在(-∞,0)為單調(diào)遞減函數(shù),∴g(-x1)>g(-x2),
          ∵g(x)為偶函數(shù),∴-g(x1)>-g(x2),即g(x1)<g(x2),
          ∴g(x)在(0,+∞)為單調(diào)遞增函數(shù).
          (2)令x=y=2代入g(x•y)=g(x)+g(y)得,
          g(4)=g(2×2)=g(2)+g(2)=2,
          (3)∵g(x)>2+g(x+1)=g(4)+g(x+1)=g[4(x+1)]
          ∵g(x)為偶函數(shù),∴g(|x|)>g[|4(x+1)|]
          由(1)得,g(x)在(0,+∞)為單調(diào)遞增函數(shù),
          x≠0
          x+1≠0
          |x|>|4(x+1)|

          解得-
          4
          3
          <x<-1
          -1<x<-
          4
          5
          ,
          綜上x的取值范圍為(-
          4
          3
          ,-1)
          ∪(-1,
          4
          5
          )
          點評:本題考查了利用賦值法求解抽象函數(shù)的函數(shù)值,偶函數(shù)在對稱區(qū)間上的單調(diào)性的證明,解決本題的關(guān)鍵是由偶函數(shù)y=g(x)在(0,+∞)單調(diào)遞增,g(a)>g(b)可得|a|>|b|,考生容易漏函數(shù)的定義域,從而誤寫為a>b.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義域為R的函數(shù)f(x)=
          f(x-2)(x≥4)
          x-1(3≤x<4)
          f(x+1)(x<3)
          ,則f(2014)=
          2
          2
          ;f(x)<
          5
          2
          的解集為
          [a,a+
          1
          2
          ),a∈Z
          [a,a+
          1
          2
          ),a∈Z

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義域為R的函數(shù)f(x)=
          -2x+n2x+1+m
          是奇函數(shù).
          (1)求m、n的值并指出函數(shù)y=f(x)在其定義域上的單調(diào)性(不要求證明);
          (2)解不等式f(x+2)+f(2x-1)<0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義域為R的函數(shù)f(x)滿足:f(x+4)=f(x),且f(x)-f(-x)=0,當(dāng)-2≤x<0時,f(x)=2-x,則f(2013)等于( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義域為(-1,1)函數(shù)f(x)=-x3-x,且f(a-3)+f(9-a2)<0,則a的取值范圍是
          (2
          2
          ,3)
          (2
          2
          ,3)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義域為R的奇函數(shù)f(x).當(dāng)x>0時,f(x)=x-3,則不等式xf(x)>0的解集為( 。
          A、(-∞,-3)∪(3,+∞)B、(-3,3)C、(-∞,0]∪(3,+∞)D、(3,+∞)

          查看答案和解析>>

          同步練習(xí)冊答案