日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點(diǎn)為F1(-c,0),點(diǎn)A(-a,0)和B(0,b)是橢圓的兩個(gè)頂點(diǎn),如果F1到直線AB的距離為
          b
          7
          ,則橢圓的離心率e=
          1
          2
          1
          2
          分析:設(shè)F1到AB的垂足為D,依題意可知,△ADF1∽△AOB進(jìn)而判斷出
          AF1
          AB
          =
          DF1
          OB
          ,進(jìn)而表示出左焦點(diǎn)F1到直線AB的距離化簡整理求得a和c的關(guān)系,則橢圓的離心率可得.
          解答:解:設(shè)F1到AB的垂足為D,
          ∵∠F1DA=∠BOA=90°,∠A為公共角
          ∴△ADF1∽△AOB
          AF1
          AB
          =
          DF1
          OB

          a-c
          a2+b2
          =
          b
          7
          b
          =
          7
          7
          ;
          ∵b2=a2-c2
          (a-c)2
          2a2-c2
          =
          1
          7

          化簡得到5a2-14ac+8c2=0
          解得a=2c 或a=
          4c
          5
          (舍去),
          ∴e=
          c
          a
          =
          1
          2

          故答案為:
          1
          2
          點(diǎn)評(píng):本題主要考查了橢圓的簡單性質(zhì).解題的關(guān)鍵是利用左焦點(diǎn)F1到直線AB的距離建立等式求得答案.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x2
          a2
          +
          y2
          b
          =1(a>b>0)
          的左、右焦點(diǎn)分別為F1、F2,離心率e=
          2
          2
          ,右準(zhǔn)線方程為x=2.
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)過點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
          F2M
          +
          F2N
          |=
          2
          26
          3
          ,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,橢圓
          x2
          a2
          +
          y2
          b 
          =1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
          3
          2

          (Ⅰ)求橢圓方程;
          (Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),求證:|AT|2=
          1
          2
          |AF1||AF2|

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,橢圓
          x2
          a2
          +
          y2
          b 
          =1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
          3
          2

          (Ⅰ)求橢圓方程;
          (Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè) A(x1,y1)、B(x2,y2)是橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)上的兩點(diǎn),O為坐標(biāo)原點(diǎn),向量
          m
          =(
          x1
          a
          ,
          y1
          b
          ),
          n
          =(
          x2
          a
          y2
          b
          )
          m
          n
          =0

          (1)若A點(diǎn)坐標(biāo)為(a,0),求點(diǎn)B的坐標(biāo);
          (2)設(shè)
          OM
          =cosθ•
          OA
          +sinθ•
          OB
          ,證明點(diǎn)M在橢圓上;
          (3)若點(diǎn)P、Q為橢圓 上的兩點(diǎn),且
          PQ
          OB
          ,試問:線段PQ能否被直線OA平分?若能平分,請(qǐng)加以證明;若不能平分,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:四川 題型:解答題

          已知橢圓
          x2
          a2
          +
          y2
          b
          =1(a>b>0)
          的左、右焦點(diǎn)分別為F1、F2,離心率e=
          2
          2
          ,右準(zhǔn)線方程為x=2.
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)過點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
          F2M
          +
          F2N
          |=
          2
          26
          3
          ,求直線l的方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案