【題目】隨著社會經(jīng)濟(jì)高速發(fā)展,人民的生活水平越來越高,部分學(xué)校安裝了中央空調(diào),某校數(shù)學(xué)建模隊調(diào)查了某品牌中央空調(diào),得到該設(shè)備使用年限x(單位:年)和維修總費用y(單位:萬元)的統(tǒng)計表如下:(每年年底維修保養(yǎng))
使用年限x(單位:年) | 2 | 3 | 4 | 5 | 6 |
維修總費用y(單位:萬元) | 1 | 3 | 4 |
由上表可得線性回歸方程,則根據(jù)此模型預(yù)報該品牌中央空調(diào)第8年年底的維修費用約為( )
A.萬元B.
萬元C.
萬元D.
萬元
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四面體中,
,
,
平面
,
,
分別為線段
,
的中點,現(xiàn)將四面體以
為軸旋轉(zhuǎn),則線段
在平面內(nèi)投影長度的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營狀況,對該公司2018年連續(xù)六個月的利潤進(jìn)行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼
之間的關(guān)系,求
關(guān)于
的線性回歸方程,并預(yù)測該公司2019年3月份的利潤;
(2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有,
兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用
個月,但新材料的不穩(wěn)定性會導(dǎo)致材料損壞的年限不相同,現(xiàn)對
,
兩種型號的新型材料對應(yīng)的產(chǎn)品各
件進(jìn)行科學(xué)模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:
使用壽命 材料類型 |
|
|
|
| 總計 |
如果你是甲公司的負(fù)責(zé)人,你會選擇采購哪款新型材料?
參考數(shù)據(jù):,
.參考公式:回歸直線方程為
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為
,曲線
的參數(shù)方程為
(α為參數(shù)).設(shè)曲線
與x軸、y軸的交點分別為A,B,線段
的中點為M,射線
與曲線
交于點N.
(1)求曲線的普通方程與曲線
的極坐標(biāo)方程;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中將底面為直角三角形且側(cè)棱垂直于底面的三棱柱稱為“塹堵”;底面為矩形,一條側(cè)棱垂直于底面的四棱錐稱之為“陽馬”;四個面均為直角三角形的四面體稱為“鱉膈”.如圖在塹堵ABC-A1B1C1中,AC⊥BC,且AA1=AB=2.下列說法正確的是( )
A.四棱錐B-A1ACC1為“陽馬”
B.四面體A1C1CB為“鱉膈”
C.四棱錐B-A1ACC1體積最大為
D.過A點分別作AE⊥A1B于點E,AF⊥A1C于點F,則EF⊥A1B
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=
)( )
A. B.
C.
D.
【答案】C
【解析】設(shè)球半徑為R,圓柱的體積為時圓柱的體積最大為
,因此材料利用率=
,選C.
點睛:空間幾何體與球接、切問題的求解方法
求解球與棱柱、棱錐的接、切問題時,一般過球心及接、切點作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解.
【題型】單選題
【結(jié)束】
12
【題目】已知拋物線:
在點
處的切線與曲線
:
相切,若動直線
分別與曲線
、
相交于
、
兩點,則
的最小值為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線C:
的焦點到直線l:
的距離為
.
(1)求m的值.
(2)如圖,已知拋物線C的動弦的中點M在直線l上,過點M且平行于x軸的直線與拋物線C相交于點N,求
面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com