日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù) (為實常數(shù)) .
          (1)當(dāng)時,求函數(shù)上的最大值及相應(yīng)的值;
          (2)當(dāng)時,討論方程根的個數(shù).
          (3)若,且對任意的,都有,求實數(shù)a的取值范圍.

          (1).;(2)時,方程有2個相異的根. 時,方程有1個根. 時,方程有0個根.(3).

          解析試題分析:(1)通過求導(dǎo)數(shù)可得函數(shù)的單調(diào)性,在對比區(qū)間的兩端點的函數(shù)值即可求得函數(shù)的最大值.(2)由于參數(shù)的變化.可以采取分離變量的方法,轉(zhuǎn)化為兩個函數(shù)的交點個數(shù)問題.其中一個是垂直于y軸的直線,另一個是通過求出函數(shù)的走向.根據(jù)圖像即可得到結(jié)論.(3)將要說明的結(jié)論通過變形得到一個等價問題從而證明新的函數(shù)的單調(diào)性,使得問題巧妙地轉(zhuǎn)化.本題只是容量大.通過研究函數(shù)的單調(diào)性,含參函數(shù)的討論.與不等式的相結(jié)合轉(zhuǎn)化為函數(shù)的單調(diào)性的證明.
          試題解析:(1),當(dāng)時,.當(dāng)時,,又
          ,當(dāng)時,取等號                 4分
          (2)易知,故,方程根的個數(shù)等價于時,方程根的個數(shù). 設(shè)=
          當(dāng)時,,函數(shù)遞減,當(dāng)時,,函數(shù)遞增.又,作出與直線的圖像,由圖像知:
          當(dāng)時,即時,方程有2個相異的根;
          當(dāng) 或時,方程有1個根;
          當(dāng)時,方程有0個根;              10分
          (3)當(dāng)時,時是增函數(shù),又函數(shù)是減函數(shù),不妨設(shè),則等價于
          ,故原題等價于函數(shù)時是減函數(shù),
          恒成立,即時恒成立.
          時是減函數(shù)     16分
          (其他解法酌情給分)
          考點:1.函數(shù)的最值問題.2.函數(shù)的單調(diào)性.3.函數(shù)與不等式的關(guān)系以及轉(zhuǎn)化為函數(shù)的單調(diào)性的證明.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知曲線.
          (Ⅰ)當(dāng)時,求曲線的斜率為1的切線方程;
          (Ⅱ)設(shè)斜率為的兩條直線與曲線相切于兩點,求證:中點在曲線上;
          (Ⅲ)在(Ⅱ)的條件下,又已知直線的方程為:,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)數(shù)列的前項和為,已知(n∈N*).
          (Ⅰ)求數(shù)列的通項公式;
          (Ⅱ)求證:當(dāng)x>0時,
          (Ⅲ)令,數(shù)列的前項和為.利用(2)的結(jié)論證明:當(dāng)n∈N*且n≥2時,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知兩點、,點為坐標(biāo)平面內(nèi)的動點,滿足.
          (1)求動點的軌跡方程;
          (2)若點是動點的軌跡上的一點,軸上的一動點,試討論直線與圓的位置關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)(其中是實數(shù)).
          (Ⅰ)求的單調(diào)區(qū)間;
          (Ⅱ)若,且有兩個極值點,求的取值范圍.
          (其中是自然對數(shù)的底數(shù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù),
          (1)當(dāng)時,函數(shù)取得極值,求的值;
          (2)當(dāng)時,求函數(shù)在區(qū)間[1,2]上的最大值;
          (3)當(dāng)時,關(guān)于的方程有唯一實數(shù)解,求實數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知
          (1)若存在使得≥0成立,求的范圍
          (2)求證:當(dāng)>1時,在(1)的條件下,成立

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)若,試確定函數(shù)的單調(diào)區(qū)間;
          (2)若且對任意,恒成立,試確定實數(shù)的取值范圍;
          (3)設(shè)函數(shù),求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)若函數(shù)在定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;
          (2)設(shè),若函數(shù)存在兩個零點,且實數(shù)滿足,問:函數(shù)處的切線能否平行于軸?若能,求出該切線方程;若不能,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案