已知函數(shù) (
為實常數(shù)) .
(1)當(dāng)時,求函數(shù)
在
上的最大值及相應(yīng)的
值;
(2)當(dāng)時,討論方程
根的個數(shù).
(3)若,且對任意的
,都有
,求實數(shù)a的取值范圍.
(1).
;(2)
時,方程
有2個相異的根.
或
時,方程
有1個根.
時,方程
有0個根.(3)
.
解析試題分析:(1)通過求導(dǎo)數(shù)可得函數(shù)的單調(diào)性,在對比區(qū)間的兩端點的函數(shù)值即可求得函數(shù)的最大值.(2)由于參數(shù)的變化.可以采取分離變量的方法,轉(zhuǎn)化為兩個函數(shù)的交點個數(shù)問題.其中一個是垂直于y軸的直線,另一個是通過求出函數(shù)的走向.根據(jù)圖像即可得到結(jié)論.(3)將要說明的結(jié)論通過變形得到一個等價問題從而證明新的函數(shù)的單調(diào)性,使得問題巧妙地轉(zhuǎn)化.本題只是容量大.通過研究函數(shù)的單調(diào)性,含參函數(shù)的討論.與不等式的相結(jié)合轉(zhuǎn)化為函數(shù)的單調(diào)性的證明.
試題解析:(1),當(dāng)
時,
.當(dāng)
時,
,又
,
故,當(dāng)
時,取等號 4分
(2)易知,故
,方程
根的個數(shù)等價于
時,方程
根的個數(shù). 設(shè)
=
,
當(dāng)時,
,函數(shù)
遞減,當(dāng)
時,
,函數(shù)
遞增.又
,
,作出
與直線
的圖像,由圖像知:
當(dāng)時,即
時,方程
有2個相異的根;
當(dāng) 或
時,方程
有1個根;
當(dāng)時,方程
有0個根; 10分
(3)當(dāng)時,
在
時是增函數(shù),又函數(shù)
是減函數(shù),不妨設(shè)
,則
等價于
即,故原題等價于函數(shù)
在
時是減函數(shù),
恒成立,即
在
時恒成立.
在
時是減函數(shù)
16分
(其他解法酌情給分)
考點:1.函數(shù)的最值問題.2.函數(shù)的單調(diào)性.3.函數(shù)與不等式的關(guān)系以及轉(zhuǎn)化為函數(shù)的單調(diào)性的證明.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線:
.
(Ⅰ)當(dāng)時,求曲線
的斜率為1的切線方程;
(Ⅱ)設(shè)斜率為的兩條直線與曲線
相切于
兩點,求證:
中點
在曲線
上;
(Ⅲ)在(Ⅱ)的條件下,又已知直線的方程為:
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前
項和為
,已知
(n∈N*).
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求證:當(dāng)x>0時,
(Ⅲ)令,數(shù)列
的前
項和為
.利用(2)的結(jié)論證明:當(dāng)n∈N*且n≥2時,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點、
,點
為坐標(biāo)平面內(nèi)的動點,滿足
.
(1)求動點的軌跡方程;
(2)若點是動點
的軌跡上的一點,
是
軸上的一動點,試討論直線
與圓
的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中
是實數(shù)).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,且
有兩個極值點
,求
的取值范圍.
(其中是自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),
.
(1)當(dāng)時,函數(shù)
取得極值,求
的值;
(2)當(dāng)時,求函數(shù)
在區(qū)間[1,2]上的最大值;
(3)當(dāng)時,關(guān)于
的方程
有唯一實數(shù)解,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若,試確定函數(shù)
的單調(diào)區(qū)間;
(2)若且對任意
,
恒成立,試確定實數(shù)
的取值范圍;
(3)設(shè)函數(shù),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在定義域內(nèi)為增函數(shù),求實數(shù)
的取值范圍;
(2)設(shè),若函數(shù)
存在兩個零點
,且實數(shù)
滿足
,問:函數(shù)
在
處的切線能否平行于
軸?若能,求出該切線方程;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com