【題目】已知時,函數(shù)
有極值
(1)求實(shí)數(shù)的值;
(2)若方程有3個實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍。
【答案】(1);(2)
【解析】
(1)先求導(dǎo)數(shù),根據(jù)f(1)=-2,f′(1)=0列出方程求出a,b;
(2)由(1)所求解析式可得f′(x),利用導(dǎo)數(shù)可得f(x)的單調(diào)區(qū)間及極值,根據(jù)f(x)的圖象的大致形狀即可求得k的范圍;
(1)因?yàn)?/span>,所以f′(x)=3ax2+b.
又因?yàn)楫?dāng)x=1時,f(x)的極值為-2,所以,
解得a=1,b=-3.
(2)由(1)可得,f′(x)=3x2-3=3(x+1)(x﹣1),
令f′(x)=0,得x=±1,
當(dāng)x<﹣1或x>1時f′(x)>0,f(x)單調(diào)遞增,當(dāng)﹣1<x<1時,f′(x)<0,f(x)單調(diào)遞減;
所以當(dāng)x=﹣1時f(x)取得極大值,f(﹣1),當(dāng)x=1時f(x)取得極小值,f(1)
,大致圖像如圖:
要使方程f(x)=k有3個解,只需k
.
故實(shí)數(shù)k的取值范圍為(-2,2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
>0)的部分圖象如圖所示,A,B分別是這部分圖象上的最高點(diǎn)、最低點(diǎn),
為坐標(biāo)原點(diǎn),若
·
=0,
則下列結(jié)論:①函數(shù)
是周期為4的奇函數(shù);②函數(shù)
是周期為4的偶函數(shù);③函數(shù)
的最大值是
;④函數(shù)
向左平移
個單位后得到的函數(shù)圖象關(guān)于原點(diǎn)對稱;其中錯誤命題的個數(shù)是( )
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品. 表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.
表1:甲套設(shè)備的樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數(shù) | 1 | 4 | 19 | 20 | 5 | 1 |
圖1:乙套設(shè)備的樣本的頻率分布直方圖
(1)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān);
甲套設(shè)備 | 乙套設(shè)備 | 合計 | |||||||||||||
合格品 | |||||||||||||||
不合格品 | |||||||||||||||
合計 | ,求 |
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)分別為
,離心率為
,過
的直線
與橢圓
交于
兩點(diǎn),且
的周長為8.
(1)求橢圓的方程;
(2)直線過點(diǎn)
,且與橢圓
交于
兩點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的最小正周期;
(2)求的最值及取最值時相應(yīng)的x的值;
(3)求函數(shù)在
的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年我省將實(shí)施新高考,新高考“依據(jù)統(tǒng)一高考成績、高中學(xué)業(yè)水平考試成績,參考高中學(xué)生綜合素質(zhì)評價信息”進(jìn)行人才選拔。我校2018級高一年級一個學(xué)習(xí)興趣小組進(jìn)行社會實(shí)踐活動,決定對某商場銷售的商品A進(jìn)行市場銷售量調(diào)研,通過對該商品一個階段的調(diào)研得知,發(fā)現(xiàn)該商品每日的銷售量(單位:百件)與銷售價格
(元/件)近似滿足關(guān)系式
,其中
為常數(shù)
已知銷售價格為3元/件時,每日可售出該商品10百件。
(1)求函數(shù)的解析式;
(2)若該商品A的成本為2元/件,根據(jù)調(diào)研結(jié)果請你試確定該商品銷售價格的值,使該商場每日銷售該商品所獲得的利潤(單位:百元)最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)10元;重量超過
的包裹,除
收費(fèi)10元之外,超過
的部分,每超出
(不足
,按
計算)需再收5元.該公司將最近承攬的100件包裹的重量統(tǒng)計如下:
公司對近60天,每天攬件數(shù)量統(tǒng)計如下表:
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計算該公司未來3天內(nèi)恰有2天攬件數(shù)在之間的概率;
(2)①估計該公司對每件包裹收取的快遞費(fèi)的平均值;
②公司將快遞費(fèi)的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費(fèi)用.目前前臺有工作人員3人,每人每天攬件不超過150件,工資100元.公司正在考慮是否將前臺工作人員裁減1人,試計算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的兩條相鄰對稱軸之間的距離為
.
(1)求的值;
(2)將函數(shù)的圖象向左平移
個單位,再將所得函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,得到函數(shù)
的圖象,若函數(shù)
在區(qū)間
上存在零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體的棱長為
,點(diǎn)
分別棱樓
的中點(diǎn),下列結(jié)論中正確的是( )
A.四面體的體積等于
B.
平面
C.平面
D.異面直線
與
所成角的正切值為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com