日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù), 其中為自然對數(shù)的底數(shù).

          (Ⅰ)討論函數(shù)的單調(diào)性.

          (Ⅱ)是否存在實數(shù),使對任意恒成立?若存在試求出的值;若不存在,請說明理由.

          【答案】見解析

          【解析】試題分析:

          求出導(dǎo)函數(shù),求出的解,在定義域內(nèi)的各區(qū)間可得的正負(fù),即得的單調(diào)區(qū)間;

          觀察函數(shù),因此有,這樣不等式可化為,設(shè),利用導(dǎo)數(shù)研究出的單調(diào)性,可根據(jù)的取值分類討論求只有時,可得有最小值,由最小值 ,把這個式子作為的函數(shù),由導(dǎo)函數(shù)得其最大值為,且,從而可得(一方面,另一方面,因此只有),,再研究在時, 是否恒成立即可.

          試題解析:

          ,.

          當(dāng), ;當(dāng) .

          所以上單調(diào)遞減,上單調(diào)遞減上單調(diào)遞增.

          (Ⅱ)注意到, .

          于是, , ,

          ,則,上單調(diào)遞減,則當(dāng),不合題意;

          易知上單調(diào)遞減,上單調(diào)遞增,

          上的最小值.

          ,有最大值,

          ,代入①得.

          當(dāng), .

          ,,上有最小值,符合題意.

          綜上,存在使對任意恒成立.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 過點, , 分別是橢圓的左、右焦點,以原點為圓心,橢圓的短軸長為直徑的圓與直線相切.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)過點的直線交橢圓, ,求內(nèi)切圓面積的最大值和此時直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          (1)當(dāng),求函數(shù)的圖象在處的切線方程

          (2)若函數(shù)在定義域上為單調(diào)增函數(shù)

          ①求最大整數(shù)值;

          ②證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

          (1)求經(jīng)過橢圓右焦點且與直線垂直的直線的極坐標(biāo)方程;

          (2)若為橢圓上任意-點,當(dāng)點到直線距離最小時,求點的直角坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) .

          當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

          對任意的, 恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成3元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到頻數(shù)表如下:

          甲公司送餐員送餐單數(shù)頻數(shù)表

          送餐單數(shù)

          38

          39

          40

          41

          42

          天數(shù)

          20

          40

          20

          10

          10

          乙公司送餐員送餐單數(shù)頻數(shù)表

          送餐單數(shù)

          38

          39

          40

          41

          42

          天數(shù)

          10

          20

          20

          40

          10

          將上表中的頻率視為概率,回答下列問題:

          (1)現(xiàn)從甲公司隨機抽取3名送餐員,求恰有2名送餐員送餐單數(shù)超過40的概率;

          (2)(i)記乙公司送餐員日工資為X(單位:元),求X的數(shù)學(xué)期望;

          (ii)某人擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日平均工資的角度考慮,他應(yīng)該選擇去哪家公司應(yīng)聘,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,已知兩個正方形ABCDDCEF不在同一平面內(nèi),MN分別為AB,DF的中點.

          (1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;

          (2)用反證法證明:直線MEBN是兩條異面直線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓E: 的焦點在x軸上,A是E的左頂點,斜率為k(k0)的直線交E于A,M兩點,點N在E上,MANA

          (1)當(dāng)t=4,|AM|=|AN|時,求AMN的面積;

          (2)當(dāng)2|AM|=|AN|時,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著“中華好詩詞”節(jié)目的播出,掀起了全民誦讀傳統(tǒng)詩詞經(jīng)典的熱潮.某大學(xué)社團為調(diào)查大學(xué)生對于“中華詩詞”的喜好,在該校隨機抽取了40名學(xué)生,記錄他們每天學(xué)習(xí)“中華詩詞”的時間,并整理得到如下頻率分布直方圖:

          根據(jù)學(xué)生每天學(xué)習(xí)“中華詩詞”的時間,可以將學(xué)生對于“中華詩詞”的喜好程度分為三個等級 :

          學(xué)習(xí)時間

          (分鐘/天)

          等級

          一般

          愛好

          癡迷

          ()的值;

          (Ⅱ) 從該大學(xué)的學(xué)生中隨機選出一人,試估計其“愛好”中華詩詞的概率;

          (Ⅲ) 假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,試估計樣本中40名學(xué)生每人每天學(xué)習(xí)“中華詩詞”的時間

          查看答案和解析>>

          同步練習(xí)冊答案