日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直線y=kx+b與橢圓交于A、B兩點,記△AOB的面積為S.

          (1)求在k=0,0<b<1的條件下,S的最大值;
          (2)當(dāng)|AB|=2,S=1時,求直線AB的方程.
          (1)1;(2)

          試題分析:(1)直線與橢圓(圓錐曲線)相交和直線與圓相交的問題有區(qū)別,直線與圓相交可以利用圓的一些性質(zhì),用幾何方法解決問題,而直線與橢圓(圓錐曲線)相交只能用解析法解題。這里直接求出兩點有坐標(biāo)(用表示),求出三角形的面積,相當(dāng)于把的面積表示成了的函數(shù),然后用不等式的知識或函數(shù)知識求出最大值。(2)同樣把直線方程與橢圓方程聯(lián)立,消去,得出關(guān)于的二次方程,兩點的橫坐標(biāo)就是這個方程的兩解,故必須滿足,而線段的長,再求出原點到直線的距離,利用面積,列出關(guān)于的方程組,解出,即直線的方程。
          試題解析:解:設(shè)點A的坐標(biāo)為(,點B的坐標(biāo)為,
          ,解得
          所以
          當(dāng)且僅當(dāng)時,.S取到最大值1.
          (Ⅱ)解:由

                 ①
          |AB|=          ②
          又因為O到AB的距離  所以 、
          ③代入②并整理,得
          解得,,代入①式檢驗,△>0
          故直線AB的方程是
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,設(shè)F(-c,0)是橢圓的左焦點,直線l:x=-與x軸交于P點,MN為橢圓的長軸,已知|MN|=8,且|PM|=2|MF|。

          (Ⅰ)求橢圓的標(biāo)準方程;
          (Ⅱ)過點P的直線m與橢圓相交于不同的兩點A,B。
          ①證明:∠AFM=∠BFN;
          ②求△ABF面積的最大值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知兩點,點在以、為焦點的橢圓上,且、、構(gòu)成等差數(shù)列.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)如圖,動直線與橢圓有且僅有一個公共點,點是直線上的兩點,且,. 求四邊形面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知曲線上任意一點到直線的距離是它到點距離的倍;曲線是以原點為頂點,為焦點的拋物線.
          (Ⅰ)求,的方程;
          (Ⅱ)過作兩條互相垂直的直線,其中相交于點,相交于點,求四邊形面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知、分別是橢圓的左、右焦點,右焦點到上頂點的距離為2,若.
          (Ⅰ)求此橢圓的方程;
          (Ⅱ)點是橢圓的右頂點,直線與橢圓交于、兩點(在第一象限內(nèi)),又、是此橢圓上兩點,并且滿足,求證:向量共線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線與橢圓有公共焦點,且橢圓過點.
          (1)求橢圓方程;
          (2)點、是橢圓的上下頂點,點為右頂點,記過點、、的圓為⊙,過點作⊙ 的切線,求直線的方程;
          (3)過橢圓的上頂點作互相垂直的兩條直線分別交橢圓于另外一點、,試問直線是否經(jīng)過定點,若是,求出定點坐標(biāo);若不是,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線的頂點在坐標(biāo)原點,焦點在軸上,且過點.

          (Ⅰ)求拋物線的標(biāo)準方程;
          (Ⅱ)與圓相切的直線交拋物線于不同的兩點若拋物線上一點滿足,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知兩定點,如果動點滿足,則點的軌跡所包圍的圖形的面積等于(  )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          橢圓內(nèi)的一點,過點P的弦恰好以P為中點,那么這弦所在的直線方程(   )
          A.B.
          C.D.

          查看答案和解析>>

          同步練習(xí)冊答案