日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】1)已知函數(shù),試判斷函數(shù)的單調(diào)性,并說明理由;

          2)已知函數(shù).

          i)判斷的奇偶性,并說明理由;

          ii)求證:對于任意的x ,yR,且x≠±1 ,y≠±1,xy≠1都有.

          3)由⑵可知滿足①式的函數(shù)是存在的,如.問:滿足①的函數(shù)是否存在無窮多個(gè)?說明理由.

          【答案】1(∞,1)(-1,+∞)上單調(diào)遞增,理由見解析;(2)(i)奇函數(shù),理由見解析; ii)證明見解析 3)存在無窮多個(gè),理由見解析.

          【解析】

          1)利用函數(shù)單調(diào)性的定義進(jìn)行判斷即可;

          2)(i)利用奇偶函數(shù)的定義進(jìn)行判斷即可;

          ii)利用對數(shù)的運(yùn)算法則通過計(jì)算可以證明出結(jié)論;

          3)通過取特例,結(jié)合(2),可以判斷存在存在無窮多個(gè).

          1)對任意的,且,

          ,

          因?yàn)?/span>,所以,即

          所以函數(shù)在區(qū)間(∞,1)上是單調(diào)遞增,同理可得在區(qū)間(-1,+∞)上單調(diào)遞增;

          2)(i的定義域?yàn)?/span>,

          對任意的,有,

          ,

          所以為奇函數(shù),

          ,所以不是偶函數(shù);

          ii)對于任意的x,yR,且x≠±1 ,y≠±1,xy≠1

          因?yàn)?/span>,

          所以;

          3)設(shè),則對于任意的x, yR,且x≠±1 ,y≠±1,xy≠1,都有

          滿足①,因?yàn)?/span> k 有無窮多個(gè),所以這樣的也有無窮多個(gè).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】袋中有紅、黃、白色球各1個(gè),每次任取1個(gè),有放回地抽三次,求基本事件的個(gè)數(shù),寫出所有基本事件的全集,并計(jì)算下列事件的概率:

          1)三次顏色各不相同;

          2)三次顏色不全相同;

          3)三次取出的球無紅色或黃色.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)求函數(shù)的對稱軸方程;

          2)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長為原來的2倍,然后再向左平移個(gè)單位,得到函數(shù)的圖象.若, , 分別是三個(gè)內(nèi)角, 的對邊, ,且,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為實(shí)常數(shù),函數(shù).

          (1)討論函數(shù)的單調(diào)性;

          (2)若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】近年來,網(wǎng)絡(luò)電商已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的消費(fèi)方式為了更好地服務(wù)民眾,某電商在其官方APP中設(shè)置了用戶評價(jià)反饋系統(tǒng),以了解用戶對商品狀況和優(yōu)惠活動的評價(jià)現(xiàn)從評價(jià)系統(tǒng)中隨機(jī)抽出200條較為詳細(xì)的評價(jià)信息進(jìn)行統(tǒng)計(jì),商品狀況和優(yōu)惠活動評價(jià)的2×2列聯(lián)表如下:

          對優(yōu)惠活動好評

          對優(yōu)惠活動不滿意

          合計(jì)

          對商品狀況好評

          100

          20

          120

          對商品狀況不滿意

          50

          30

          80

          合計(jì)

          150

          50

          200

          I)能否在犯錯誤的概率不超過0.001的前提下認(rèn)為優(yōu)惠活動好評與商品狀況好評之間有關(guān)系?

          (Ⅱ)為了回饋用戶,公司通過APP向用戶隨機(jī)派送每張面額為0元,1元,2元的三種優(yōu)惠券用戶每次使用APP購物后,都可獲得一張優(yōu)惠券,且購物一次獲得1元優(yōu)惠券,2元優(yōu)惠券的概率分別是,,各次獲取優(yōu)惠券的結(jié)果相互獨(dú)立若某用戶一天使用了APP購物兩次,記該用戶當(dāng)天獲得的優(yōu)惠券面額之和為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

          參考數(shù)據(jù)

          PK2k

          0.150

          0.100

          0.050

          0.025

          0.010

          0.005

          0.001

          k

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          參考公式:K2,其中na+b+c+d

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率,左、右焦點(diǎn)分別為,且與拋物線的焦點(diǎn)重合.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)若過的直線交橢圓于兩點(diǎn),過的直線交橢圓于兩點(diǎn),且,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公園欲將一塊空地規(guī)劃成如圖所示的區(qū)域,其中在邊長為20米的正方形內(nèi)種植經(jīng)紅色郁金香,在正方形的剩余部分(即四個(gè)直角三角形內(nèi))種植黃色郁金香.現(xiàn)要在以為邊長的矩形內(nèi)種植綠色草坪,要求綠色草坪的面積等于黃色郁金香的面積.設(shè),米.

          1)求之間的函數(shù)關(guān)系式;

          2)求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】網(wǎng)絡(luò)游戲要實(shí)現(xiàn)可持續(xù)發(fā)展,必須要發(fā)展綠色網(wǎng)游.為此,國家文化部將從內(nèi)容上對網(wǎng)游作出強(qiáng)制規(guī)定,國家信息產(chǎn)業(yè)部還將從技術(shù)上加強(qiáng)對網(wǎng)游的強(qiáng)制限制,開發(fā)限制網(wǎng)癮的疲勞系統(tǒng),現(xiàn)已開發(fā)的“游戲防沉迷系統(tǒng)”規(guī)則如下:

          小時(shí)以內(nèi)(含小時(shí))為健康時(shí)間,玩家在這段時(shí)間內(nèi)獲得的累積經(jīng)驗(yàn)值(單位:)與游戲時(shí)間(小時(shí))滿足關(guān)系式:為常數(shù));

          小時(shí)到小時(shí)(含小時(shí))為疲勞時(shí)間,玩家在這段時(shí)間內(nèi)獲得的經(jīng)驗(yàn)值為(即累積經(jīng)驗(yàn)值不變);

          ③超過小時(shí)為不健康時(shí)間,累積經(jīng)驗(yàn)值開始損失,損失的經(jīng)驗(yàn)值與不健康時(shí)間成正比例關(guān)系,比例系數(shù)為.

          1)當(dāng)時(shí),寫出累積經(jīng)驗(yàn)值與游戲時(shí)間的函數(shù)關(guān)系式,并求出游戲小時(shí)的累積經(jīng)驗(yàn)值;

          2)定義“玩家愉悅指數(shù)”為累積經(jīng)驗(yàn)值與游戲時(shí)間的比值,記作;若,開發(fā)部門希望在健康時(shí)間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知fx)=ax+kaxa0a≠1)是R上的奇函數(shù),且f1

          1)求fx)的解析式;

          2)若關(guān)于x的方程f1+f13mx2)=0在區(qū)間[0,1]內(nèi)只有一個(gè)解,求m取值集合;

          3)是否存在正整數(shù)n,使不得式f2xn1fx)對一切x[1,1]均成立?若存在,求出所有n的值若不存在,說明理由

          查看答案和解析>>

          同步練習(xí)冊答案