日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】畢達(dá)哥拉斯樹是由畢達(dá)哥拉斯根據(jù)“勾股定理”所畫出來的一個(gè)可以無限重復(fù)的圖形,也叫“勾股樹”,其是由一個(gè)等腰直角三角形分別以它的每一條邊向外作正方形而得到.圖1所示是第1代“勾股樹”,重復(fù)圖1的作法,得到第2代“勾股樹”(如圖2),如此繼續(xù).若“勾股樹”上共得到8191個(gè)正方形,設(shè)初始正方形的邊長(zhǎng)為1,則最小正方形的邊長(zhǎng)為( )

          A.B.C.D.

          【答案】B

          【解析】

          由圖可知,設(shè)第個(gè)圖中正方形的個(gè)數(shù)為,則,結(jié)合累加法可求出,令,可確定第12個(gè)圖形中得到8191個(gè)正方形;結(jié)合邊長(zhǎng)規(guī)律,即第個(gè)圖中最小正方形邊長(zhǎng)為,從而可求出答案.

          解:設(shè)第個(gè)圖中正方形的個(gè)數(shù)為,則由圖可知

          ,將個(gè)式子相加可得 ,

          所以,當(dāng)時(shí),,

          所以.,解得.

          由題意知,第一個(gè)圖中最小正方形邊長(zhǎng)為 ,第二個(gè)圖中最小正方形邊長(zhǎng)為

          則第個(gè)圖中最小正方形邊長(zhǎng)為,則.

          故選:B.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中為常數(shù).

          (1)若直線是曲線的一條切線,求實(shí)數(shù)的值;

          (2)當(dāng)時(shí),若函數(shù)上有兩個(gè)零點(diǎn).求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,,圓,點(diǎn),是圓上的動(dòng)點(diǎn),線段的垂直平分線交直線于點(diǎn),點(diǎn)的軌跡為曲線.

          1)討論曲線的形狀,并求其方程;

          2)若,且面積的最大值為,直線過點(diǎn)且不垂直于坐標(biāo)軸,與曲線交于,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)列(任意項(xiàng)都不為零)的前項(xiàng)和為,首項(xiàng)為,對(duì)于任意,滿足.

          1)數(shù)列的通項(xiàng)公式;

          2)是否存在使得成等比數(shù)列,且成等差數(shù)列?若存在,試求的值;若不存在,請(qǐng)說明理由;

          3)設(shè)數(shù)列,,若由的前項(xiàng)依次構(gòu)成的數(shù)列是單調(diào)遞增數(shù)列,求正整數(shù)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)在以為直徑的上運(yùn)動(dòng),平面,且,點(diǎn)、分別是、的中點(diǎn).

          1)求證:平面平面;

          2)若,求平面與平面所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓,點(diǎn)在橢圓上,過點(diǎn)作斜率為的直線恰好與橢圓有且僅有一個(gè)公共點(diǎn).

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)設(shè)點(diǎn)為橢圓的長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作斜率為的直線交橢圓于不同的兩點(diǎn),,是否存在常數(shù),使成等差數(shù)列?若存在,求出的值:若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖是1990年-2017年我國(guó)勞動(dòng)年齡(15-64歲)人口數(shù)量及其占總?cè)丝诒戎厍闆r:

          根據(jù)圖表信息,下列統(tǒng)計(jì)結(jié)論不正確的是( 。

          A. 2000年我國(guó)勞動(dòng)年齡人口數(shù)量及其占總?cè)丝诒戎氐哪暝龇鶠樽畲?/span>

          B. 2010年后我國(guó)人口數(shù)量開始呈現(xiàn)負(fù)增長(zhǎng)態(tài)勢(shì)

          C. 2013年我國(guó)勞動(dòng)年齡人口數(shù)量達(dá)到峰值

          D. 我國(guó)勞動(dòng)年齡人口占總?cè)丝诒戎貥O差超過

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項(xiàng)和為,

          (1)求數(shù)列的通項(xiàng)公式.

          (2)設(shè)數(shù)列滿足,

          ①求數(shù)列的通項(xiàng)公式;

          ②是否存在正整數(shù),使得,,成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)其中a為常數(shù),設(shè)e為自然對(duì)數(shù)的底數(shù).

          1)當(dāng)時(shí),求過切點(diǎn)為的切線方程;

          2)若在區(qū)間上的最大值為,求a的值;

          3)若不等式恒成立,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案