日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項(xiàng)和為,

          (1)求數(shù)列的通項(xiàng)公式.

          (2)設(shè)數(shù)列滿足,

          ①求數(shù)列的通項(xiàng)公式;

          ②是否存在正整數(shù),使得,成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

          【答案】;(2)①;②見(jiàn)解析

          【解析】

          (1)直接由,列關(guān)于首項(xiàng)和公差的方程組求解方程組得首項(xiàng)和公差,代入等差數(shù)列的通項(xiàng)公式得結(jié)論;(2)①把數(shù)列的通項(xiàng)公式代入 ,然后裂項(xiàng),累加后即可求得數(shù)列的通項(xiàng)公式;②假設(shè)存在正整數(shù),使得成等差數(shù)列,,由此列關(guān)于的方程求解得結(jié)論.

          ⑴由

          所以

          (2)①因?yàn)?/span>

          ,...

          各式相加得,所以

          符合上式,

          所以

          ②存在正整數(shù),使得,成等差數(shù)列,

          ,即

          化解整理可得,

          因?yàn)?/span>

          所以,所以,得,

          所以

          當(dāng)時(shí),,不合題意,舍去

          故存在,

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在某次試驗(yàn)中,兩個(gè)試驗(yàn)數(shù)據(jù)x,y的統(tǒng)計(jì)結(jié)果如下面的表格1所示.

          x

          1

          2

          3

          4

          5

          y

          2

          3

          4

          4

          5

          表格1

          (1)在給出的坐標(biāo)系中畫(huà)出數(shù)據(jù)x,y的散點(diǎn)圖.

          (2)補(bǔ)全表格2,根據(jù)表格2中的數(shù)據(jù)和公式求下列問(wèn)題.

          ①求出y關(guān)于x的回歸直線方程中的.

          ②估計(jì)當(dāng)x=10時(shí),的值是多少?

          表格2

          序號(hào)

          x

          y

          x2

          xy

          1

          1

          2

          1

          2

          2

          2

          3

          4

          6

          3

          3

          4

          9

          12

          4

          4

          4

          16

          16

          5

          5

          5

          25

          25

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知?jiǎng)訄A過(guò)定點(diǎn)P(4,0),且在y軸上截得的弦MN的長(zhǎng)為8.

          (1)求動(dòng)圓圓心C的軌跡方程;

          (2)過(guò)點(diǎn)(2,0)的直線l與動(dòng)圓圓心C的軌跡交于A,B兩點(diǎn),求證:是一個(gè)定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】甲,乙兩人進(jìn)行圍棋比賽,共比賽2n(n∈N+)局,根據(jù)以往比賽勝負(fù)的情況知道,每局甲勝的概率和乙勝的概率均為 .如果某人獲勝的局?jǐn)?shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n).
          (1)求P(2)與P(3)的值;
          (2)試比較P(n)與P(n+1)的大小,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 =1(a>b>0)的離心率為 ,長(zhǎng)軸長(zhǎng)為4,過(guò)橢圓的左頂點(diǎn)A作直線l,分別交橢圓和圓x2+y2=a2于相異兩點(diǎn)P,Q.

          (1)若直線l的斜率為 ,求 的值;
          (2)若 ,求實(shí)數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an},{bn}均為各項(xiàng)都不相等的數(shù)列,Sn為{an}的前n項(xiàng)和,an+1bn=Sn+1(n∈N).
          (1)若a1=1,bn= ,求a4的值;
          (2)若{an}是公比為q的等比數(shù)列,求證:存在實(shí)數(shù)λ,使得{bn+λ}為等比數(shù)列;
          (3)若{an}的各項(xiàng)都不為零,{bn}是公差為d的等差數(shù)列,求證:a2 , a3 , …,an…成等差數(shù)列的充要條件是d=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】甲,乙兩人進(jìn)行圍棋比賽,共比賽2n(n∈N+)局,根據(jù)以往比賽勝負(fù)的情況知道,每局甲勝的概率和乙勝的概率均為 .如果某人獲勝的局?jǐn)?shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n).
          (1)求P(2)與P(3)的值;
          (2)試比較P(n)與P(n+1)的大小,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在等腰梯形ABCD中,AB=2,CD=4,BC= ,點(diǎn)E,F(xiàn)分別為AD,BC的中點(diǎn).如果對(duì)于常數(shù)λ,在ABCD的四條邊上,有且只有8個(gè)不同的點(diǎn)P使得 =λ成立,那么實(shí)數(shù)λ的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,以原點(diǎn)O為頂點(diǎn),以y軸為對(duì)稱軸的拋物線E的焦點(diǎn)為F(0,1),點(diǎn)M是直線l:y=m(m<0)上任意一點(diǎn),過(guò)點(diǎn)M引拋物線E的兩條切線分別交x軸于點(diǎn)S,T,切點(diǎn)分別為B,A.

          (1)求拋物線E的方程;

          (2)求證:點(diǎn)S,T在以FM為直徑的圓上.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案