【題目】如圖,三棱臺(tái)中,
,
.
(1)證明:;
(2)若,求二面角
的余弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)過作
交
于點(diǎn)
,連接
,易證得
,進(jìn)而得到
,得到
,即
,由線面垂直的判定定理得到
平面
,進(jìn)而得到
;
(2)根據(jù)題意,進(jìn)一步得到,建立如圖空間直角坐標(biāo)系,分別求得平面
的一個(gè)法向量
和平面
的一個(gè)法向量
,利用公式求得
的值,進(jìn)而得到二面角
的余弦值.
(1)過作
交
于點(diǎn)
,連接
,
因?yàn)?/span>,所以
,
所以,所以
,
所以,即
,
因?yàn)?/span>,所以
平面
,
又因?yàn)?/span>平面
,所以
.
(2)因?yàn)?/span>,
所以,所以
,
所以,因?yàn)?/span>
,
所以,所以
.
如圖,以為原點(diǎn),以
的方向?yàn)?/span>
軸,
軸,
軸的正方向建立空間直角坐標(biāo)系
,
易知,所以
,
所以,
設(shè)是平面
的一個(gè)法向量,
則即
取,
易知平面的一個(gè)法向量
,
則,
因?yàn)槎娼?/span>為銳角,
所以二面角的余弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面
是正方形,
底面
,
,
、
、
分別是棱
、
、
的中點(diǎn),對(duì)于平面
截四棱錐
所得的截面多邊形,有以下三個(gè)結(jié)論:
①截面的面積等于;
②截面是一個(gè)五邊形;
③截面只與四棱錐四條側(cè)棱中的三條相交.
其中,所有正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為:
(
為參數(shù)),
的參數(shù)方程為:
(
為參數(shù)).
(1)化、
的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;
(2)若直線的極坐標(biāo)方程為:
,曲線
上的點(diǎn)
對(duì)應(yīng)的參數(shù)
,曲線
上的點(diǎn)
對(duì)應(yīng)的參數(shù)
,求
的中點(diǎn)
到直線
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新冠病毒是一種通過飛沫和接觸傳播的變異病毒,為篩查該病毒,有一種檢驗(yàn)方式是檢驗(yàn)血液樣本相關(guān)指標(biāo)是否為陽性,對(duì)于份血液樣本,有以下兩種檢驗(yàn)方式:一是逐份檢驗(yàn),則需檢驗(yàn)
次.二是混合檢驗(yàn),將其中
份血液樣本分別取樣混合在一起,若檢驗(yàn)結(jié)果為陰性,那么這
份血液全為陰性,因而檢驗(yàn)一次就夠了;如果檢驗(yàn)結(jié)果為陽性,為了明確這
份血液究竟哪些為陽性,就需要對(duì)它們?cè)僦鸱輽z驗(yàn),此時(shí)
份血液檢驗(yàn)的次數(shù)總共為
次.某定點(diǎn)醫(yī)院現(xiàn)取得4份血液樣本,考慮以下三種檢驗(yàn)方案:方案一,逐個(gè)檢驗(yàn);方案二,平均分成兩組檢驗(yàn);方案三,四個(gè)樣本混在一起檢驗(yàn).假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本檢驗(yàn)結(jié)果是陽性還是陰性都是相互獨(dú)立的,且每份樣本是陰性的概率為
.
(Ⅰ)求把2份血液樣本混合檢驗(yàn)結(jié)果為陽性的概率;
(Ⅱ)若檢驗(yàn)次數(shù)的期望值越小,則方案越“優(yōu)”.方案一、二、三中哪個(gè)最“優(yōu)”?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為(
為參數(shù)),以直角坐標(biāo)系的原點(diǎn)o為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程是:
(Ⅰ)求曲線C的普通方程和直線l的直角坐標(biāo)方程:
(Ⅱ)點(diǎn)P是曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,點(diǎn)E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點(diǎn)M,N分別在AE,CD上運(yùn)動(dòng)(不含端點(diǎn)),且AM=CN,則當(dāng)四面體C﹣EMN的體積取得最大值
時(shí),三棱錐A﹣BCD的外接球的表面積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)為曲線
上的點(diǎn),
,垂足為
,若
的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在
,
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)若函數(shù)在
處的切線平行于
軸,是否存在整數(shù)
,使不等式
在
時(shí)恒成立?若存在,求出
的最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點(diǎn)O是對(duì)角線AC與BD的交點(diǎn),AB=2,∠BAD=60°,M是PD的中點(diǎn).
(Ⅰ)求證:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)當(dāng)三棱錐C﹣PBD的體積等于 時(shí),求PA的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com