日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 非空集合G關(guān)于運(yùn)算⊕滿(mǎn)足,①對(duì)任意a、b∈G,都有a⊕b∈G; ②存在e∈G,使對(duì)一切a∈G都有a⊕e=e⊕a=a,則稱(chēng)G關(guān)于運(yùn)算⊕的融洽集.現(xiàn)有下列集合和運(yùn)算:
          (1)G={非負(fù)整數(shù)},⊕整數(shù)的加法;
          (2)G={偶數(shù)},⊕整數(shù)的乘法; 
          (3)G={平面向量},⊕平面向量的加法.
          其中為融洽集的個(gè)數(shù)是( 。
          A.0B.1C.2D.3
          根據(jù)題意我們可知①當(dāng)a,b都為非負(fù)整數(shù)時(shí),a,b通過(guò)加法運(yùn)算還是非負(fù)整數(shù),且存在一整數(shù)0∈G有0+a=a+0=a,所以①為融洽集;
          ③當(dāng)a,b 都為平面向量時(shí),兩平面向量相加任然為平面向量,且存在零向量通過(guò)向量加法滿(mǎn)足條件(2);
          ②中找不到滿(mǎn)足條件(2)的e.
          故選C.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          非空集合G關(guān)于運(yùn)算⊕滿(mǎn)足:(1)對(duì)任意的a,b∈G,都有a⊕b∈G,(2)存在e∈G,都有a⊕e=e⊕a=a,則稱(chēng)G關(guān)于運(yùn)算⊕為“融洽集”.現(xiàn)給出下列集合和運(yùn)算:
          ①G={非負(fù)整數(shù)},⊕為整數(shù)的加法.
          ②G={偶數(shù)},⊕為整數(shù)的乘法.
          ③G={平面向量},⊕為平面向量的加法.
          ④G={二次三項(xiàng)式},⊕為多項(xiàng)式的加法.
          ⑤G={虛數(shù)},⊕為復(fù)數(shù)的乘法.
          其中G關(guān)于運(yùn)算⊕為“融洽集”的是
           
          .(寫(xiě)出所有“融洽集”的序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          16、非空集合G關(guān)于運(yùn)算⊕滿(mǎn)足:①對(duì)于任意a、b∈G,都有a⊕b∈G;②存在e∈G,使對(duì)一切a∈G都有a⊕e=e⊕a=a,則稱(chēng)G關(guān)于運(yùn)算⊕為和諧集,現(xiàn)有下列命題:
          ①G={a+bi|a,b為偶數(shù)},⊕為復(fù)數(shù)的乘法,則G為和諧集;
          ②G={二次三項(xiàng)式},⊕為多項(xiàng)式的加法,則G不是 和諧集;
          ③若⊕為實(shí)數(shù)的加法,G⊆R且G為和諧集,則G要么為0,要么為無(wú)限集;
          ④若⊕為實(shí)數(shù)的乘法,G⊆R且G為和諧集,則G要么為0,要么為無(wú)限集,其中正確的有
          ②③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          非空集合G關(guān)于運(yùn)算⊕滿(mǎn)足:(1)對(duì)任意a,b∈G,都有a⊕b∈G;(2)存在e∈G,使得對(duì)一切a∈G,都有a⊕e=e⊕a=a,則稱(chēng)G關(guān)于運(yùn)算⊕為“融洽集”;現(xiàn)給出下列集合和運(yùn)算:①G={非負(fù)整數(shù)},⊕為整數(shù)的加法;   ②G={函數(shù)},⊕為函數(shù)的和;③G={不等式},⊕為同向不等式的加法;④G={虛數(shù)},⊕為復(fù)數(shù)的乘法.其中G關(guān)于運(yùn)算⊕為“融洽集”的是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•梅州二模)非空集合G關(guān)于運(yùn)算⊕滿(mǎn)足:(1)對(duì)于任意a、b∈G,都有a⊕b∈G;(2)存在e∈G,使對(duì)一切a∈G都有a⊕e=e⊕a=a,則稱(chēng)G關(guān)于運(yùn)算⊕為“融洽集”,現(xiàn)在給出集合和運(yùn)算::
          ①G={非負(fù)整數(shù)},⊕為整數(shù)的加法;
          ②G={偶數(shù)},⊕為整數(shù)的乘法;
          ③G={平面向量},⊕為平面向量的加法;
          ④G={虛數(shù)},⊕為復(fù)數(shù)乘法,其中G為關(guān)于運(yùn)算⊕的“融洽集”的個(gè)數(shù)為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          非空集合G關(guān)于運(yùn)算滿(mǎn)足:①對(duì)于任意a、b∈G,都有a?b∈G;②存在e∈G,使對(duì)一切a∈G都有a?e=e?a=a,則稱(chēng)G關(guān)于運(yùn)算為融洽集,現(xiàn)有下列集合運(yùn)算:
          (1)G={非負(fù)整數(shù)},為整數(shù)的加法;
          (2)G={偶數(shù)},為整數(shù)的乘法;
          (3)G={平面向量},為平面向量的加法;
          (4)G={二次三項(xiàng)式},為多項(xiàng)式的加法;
          其中關(guān)于運(yùn)算的融洽集有
          (1)(3)
          (1)(3)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案