日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 16、非空集合G關(guān)于運算⊕滿足:①對于任意a、b∈G,都有a⊕b∈G;②存在e∈G,使對一切a∈G都有a⊕e=e⊕a=a,則稱G關(guān)于運算⊕為和諧集,現(xiàn)有下列命題:
          ①G={a+bi|a,b為偶數(shù)},⊕為復(fù)數(shù)的乘法,則G為和諧集;
          ②G={二次三項式},⊕為多項式的加法,則G不是 和諧集;
          ③若⊕為實數(shù)的加法,G⊆R且G為和諧集,則G要么為0,要么為無限集;
          ④若⊕為實數(shù)的乘法,G⊆R且G為和諧集,則G要么為0,要么為無限集,其中正確的有
          ②③
          分析:根據(jù)已知中關(guān)于和諧集的定義:非空集合G關(guān)于運算⊕滿足:①對于任意a、b∈G,都有a⊕b∈G;②存在e∈G,使對一切a∈G都有a⊕e=e⊕a=a,我們利用題目四個結(jié)論中所給的運算法則,對所給的集合進(jìn)行判斷,特別是對特殊元素進(jìn)行判斷,即可得到答案.
          解答:解:對于G={a+bi|a,b為偶數(shù)},⊕為復(fù)數(shù)的乘法,則根據(jù)偶數(shù)的和還是偶數(shù),故滿足條件①,但不存在e∈G,使對一切a∈G都有a⊕e=e⊕a=a,不滿足條件②,
          故①“G={a+bi|a,b為偶數(shù)},⊕為復(fù)數(shù)的乘法,則G為和諧集”不正確;
          對于G={二次三項式},若a、b∈G時,a,b的兩個同類項系數(shù),則其和不再為三項式,故G不是 和諧集,故②正確;
          對于⊕為實數(shù)的加法,G⊆R且G為和諧集,G要么為{0}時滿足要求,若G中存在不為0的實數(shù)元素,則必為無限集,故③正確;
          若⊕為實數(shù)的乘法,G⊆R且G為和諧集,則G可以為{0},也可以為{0,1},故④錯誤;
          故答案為:②③
          點評:此題以集合為載體,通過新定義“融洽集”,解決這類型題目時,心情平和是很重要的,對于每個小題,采用把這里的運算⊕換成每個小題給出的運算,逐個驗證就可得出正確答案.從這個題可以看出,對于常見的集合中的特殊元素,我們應(yīng)該引起足夠的重視.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          非空集合G關(guān)于運算⊕滿足:(1)對任意的a,b∈G,都有a⊕b∈G,(2)存在e∈G,都有a⊕e=e⊕a=a,則稱G關(guān)于運算⊕為“融洽集”.現(xiàn)給出下列集合和運算:
          ①G={非負(fù)整數(shù)},⊕為整數(shù)的加法.
          ②G={偶數(shù)},⊕為整數(shù)的乘法.
          ③G={平面向量},⊕為平面向量的加法.
          ④G={二次三項式},⊕為多項式的加法.
          ⑤G={虛數(shù)},⊕為復(fù)數(shù)的乘法.
          其中G關(guān)于運算⊕為“融洽集”的是
           
          .(寫出所有“融洽集”的序號)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          非空集合G關(guān)于運算⊕滿足:(1)對任意a,b∈G,都有a⊕b∈G;(2)存在e∈G,使得對一切a∈G,都有a⊕e=e⊕a=a,則稱G關(guān)于運算⊕為“融洽集”;現(xiàn)給出下列集合和運算:①G={非負(fù)整數(shù)},⊕為整數(shù)的加法;   ②G={函數(shù)},⊕為函數(shù)的和;③G={不等式},⊕為同向不等式的加法;④G={虛數(shù)},⊕為復(fù)數(shù)的乘法.其中G關(guān)于運算⊕為“融洽集”的是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•梅州二模)非空集合G關(guān)于運算⊕滿足:(1)對于任意a、b∈G,都有a⊕b∈G;(2)存在e∈G,使對一切a∈G都有a⊕e=e⊕a=a,則稱G關(guān)于運算⊕為“融洽集”,現(xiàn)在給出集合和運算::
          ①G={非負(fù)整數(shù)},⊕為整數(shù)的加法;
          ②G={偶數(shù)},⊕為整數(shù)的乘法;
          ③G={平面向量},⊕為平面向量的加法;
          ④G={虛數(shù)},⊕為復(fù)數(shù)乘法,其中G為關(guān)于運算⊕的“融洽集”的個數(shù)為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          非空集合G關(guān)于運算滿足:①對于任意a、b∈G,都有a?b∈G;②存在e∈G,使對一切a∈G都有a?e=e?a=a,則稱G關(guān)于運算為融洽集,現(xiàn)有下列集合運算:
          (1)G={非負(fù)整數(shù)},為整數(shù)的加法;
          (2)G={偶數(shù)},為整數(shù)的乘法;
          (3)G={平面向量},為平面向量的加法;
          (4)G={二次三項式},為多項式的加法;
          其中關(guān)于運算的融洽集有
          (1)(3)
          (1)(3)

          查看答案和解析>>

          同步練習(xí)冊答案