日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知P是直線3+4+8=0上的動(dòng)點(diǎn),PA、PB是圓=0的兩切線,A、B是切點(diǎn),C是圓心,那么四邊形PACB面積的最小值為      .

          試題分析:圓C: 即,表示以C(1,1)為圓心,以1為半徑的圓.由于四邊形PACB面積等于 2× PA×AC=PA,而 PA=,故當(dāng)PC最小時(shí),四邊形PACB面積最。諴C的最小值等于圓心C到直線l:3x+4y+8="0" 的距離d,而d==3,故四邊形PACB面積的最小的最小值為=2,故選B.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本題滿分16分)在平面直角坐標(biāo)系中,已知圓,圓,且).
          (1)設(shè)為坐標(biāo)軸上的點(diǎn),滿足:過(guò)點(diǎn)P分別作圓與圓的一條切線,切點(diǎn)分別為、,使得,試求出所有滿足條件的點(diǎn)的坐標(biāo);
          (2)若斜率為正數(shù)的直線平分圓,求證:直線與圓總相交.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          以直角坐標(biāo)系的原點(diǎn)為極點(diǎn)O,軸正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)C的極坐標(biāo)為,若直線l經(jīng)過(guò)點(diǎn)P,且傾斜角為,圓C的半徑為4.
          (1).求直線l的參數(shù)方程及圓C的極坐標(biāo)方程;
          (2).試判斷直線l與圓C有位置關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知圓C:x2+(y-3)2=4,過(guò)A(-1,0)的直線l與圓C相交于P,Q兩點(diǎn),若|PQ|=2,則直線l的方程為(  )
          A.x=-1或4x+3y-4=0
          B.x=-1或4x-3y+4=0
          C.x=1或4x-3y+4=0
          D.x=1或4x+3y-4=0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在圓上任取一點(diǎn),過(guò)點(diǎn)軸的垂線段,為垂足.設(shè)為線段的中點(diǎn).
          (1)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
          (2)若圓在點(diǎn)處的切線與軸交于點(diǎn),試判斷直線與軌跡的位置關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知點(diǎn)是直線上一動(dòng)點(diǎn),是圓C:的兩條切線,A、B是切點(diǎn),若四邊形的最小面積是2,則的值為?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          過(guò)點(diǎn)作圓的弦,其中最短的弦長(zhǎng)為     .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          直線被圓截得的弦長(zhǎng)為    (  )
          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知圓C的方程為:x2+y2-2mx-2y+4m-4=0(m∈R).
          (1)試求m的值,使圓C的面積最。
          (2)求與滿足(1)中條件的圓C相切,且過(guò)點(diǎn)(1,-2)的直線方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案