日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知單調(diào)遞增的等比數(shù)列an滿足:a2+a3+a4=28,且a3+2是a2、a4的等差中項(xiàng),則數(shù)列an的前n項(xiàng)和Sn=
           
          分析:先設(shè)出等比數(shù)列的首項(xiàng)和公比,然后利用等比數(shù)列的通項(xiàng)公式化簡(jiǎn)a2+a3+a4=28得到①,根據(jù)a3+2是a2、a4的等差中項(xiàng)列出式子化簡(jiǎn)得②,聯(lián)立①②可解出a和q,然后根據(jù)等比數(shù)列的前n項(xiàng)和的公式求出即可.
          解答:解:設(shè)出等比數(shù)列的首項(xiàng)為a,公比為q,則an=aqn,
          因?yàn)閍2+a3+a4=28得到aq+aq2+aq3=28①;又a3+2是a2、a4的等差中項(xiàng)得到2(aq2+2)=aq+aq3②.
          由①得:aq(1+q+q2)=28③,由②得:aq2=8,aq+aq3=20即aq(1+q2)=20④
          ③④兩邊相除得:
          1+q+q2
          1+q2
          =
          7
          5
          ,化簡(jiǎn)得:2q2-5q+2=0即(2q-1)(q-2)=0,所以q=
          1
          2
          或q=2,
          因?yàn)榇藬?shù)列為單調(diào)遞增數(shù)列,所以q=2,代入①求得a=2,
          則數(shù)列an的前n項(xiàng)和Sn=
          2(1-2n)
          1-2
          =2n+1-2.
          答案為2n+1-2
          點(diǎn)評(píng):此題是一道綜合題,要求學(xué)生會(huì)根據(jù)題中的兩個(gè)條件列出關(guān)于首項(xiàng)和公比的方程并求出解,靈活運(yùn)用等比數(shù)列的前n項(xiàng)和的公式化簡(jiǎn)求值.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a4=20,a3=8;
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)若bn=anlog
          12
          an
          ,數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn+n•2n+1>50成立的正整數(shù)n的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)設(shè)bn=anlog
          12
          an,求數(shù)列{bn}
          的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)若bn=anlog 
          12
          an,Sn=b1+b2+b3+…+bn,對(duì)任意正整數(shù)n,Sn+(n+m)an+1<0恒成立,試求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a3+a4=28,a3+2是a2,a4的等差中項(xiàng).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)bn=-nan,求數(shù)列{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2007•武漢模擬)已知單調(diào)遞增的等比數(shù)列{an}中,a2+a3+a4=28,且a3+2是a2、a4的等差中項(xiàng).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)若bn=log2an,求數(shù)列{
          1bnbn+1
          }
          的前n項(xiàng)和Tn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案