【題目】已知公差大于零的等差數(shù)列的前
項(xiàng)和為
,且
,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列是等差數(shù)列,且
,求非零常數(shù)
的值.
(3)設(shè),
為數(shù)列
的前
項(xiàng)和,是否存在正整數(shù)
,使得
對(duì)任意的
均成立?若存在,求出
的最小值;若不存在,請(qǐng)說(shuō)明理由.
【答案】見(jiàn)解析
【解析】(1)因?yàn)閿?shù)列為等差數(shù)列,
,所以
,
又,所以
,
是方程
的兩個(gè)根,(2分)
由解得
,
,
設(shè)等差數(shù)列的公差為
,由題意可得
,所以
,
所以,
,所以
,解得
,(3分)
所以,故數(shù)列
的通項(xiàng)公式為
.(4分)
(2)由(1)知,,所以
,
所以,
,
,(5分)
因?yàn)閿?shù)列是等差數(shù)列,所以
,即
,
即,解得
(
舍去),(7分)
當(dāng)時(shí),
,易知數(shù)列
是等差數(shù)列,滿(mǎn)足題意.
故非零常數(shù)的值為
.(8分)
(3)由題可得,(10分)
利用裂項(xiàng)相消法可得,故
,(11分)
所以存在正整數(shù),使得
對(duì)任意的
均成立,
所以的最小值為
.(12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線(
為參數(shù)),曲線
(
為參數(shù)).
(1)設(shè)與
相交于
兩點(diǎn),求
;
(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的
倍,縱坐標(biāo)壓縮為原來(lái)的
倍,得到曲線
,設(shè)點(diǎn)
是曲線
上的一個(gè)動(dòng)點(diǎn),求它到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為圓柱的軸,CD為底面直徑,E為底面圓周上一點(diǎn),AB=1,CD=2,CE=DE.
求(1)三棱錐A﹣CDE的全面積;
(2)點(diǎn)D到平面ACE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的頂點(diǎn)
,
邊上的中線
所在直線方程為
,
邊上的高
所在直線方程為
.
(1)求點(diǎn)的坐標(biāo);
(2)求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2017年“雙”,“雙
”購(gòu)物狂歡節(jié)的來(lái)臨,某青花瓷生產(chǎn)廠家計(jì)劃每天生產(chǎn)湯碗、花瓶、茶杯這三種瓷器共
個(gè),生產(chǎn)一個(gè)湯碗需
分鐘,生產(chǎn)一個(gè)花瓶需
分鐘,生產(chǎn)一個(gè)茶杯需
分鐘,已知總生產(chǎn)時(shí)間不超過(guò)
小時(shí).若生產(chǎn)一個(gè)湯碗可獲利潤(rùn)
元,生產(chǎn)一個(gè)花瓶可獲利潤(rùn)
元,生產(chǎn)一個(gè)茶杯可獲利潤(rùn)
元.
(1)使用每天生產(chǎn)的湯碗個(gè)數(shù)與花瓶個(gè)數(shù)
表示每天的利潤(rùn)
(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的是一個(gè)幾何體的直觀圖和三視圖(其中正視圖為直角梯形,俯視圖為正方形,側(cè)視圖為直角三角形).
(1)求四棱錐P-ABCD的體積;
(2)若G為BC上的動(dòng)點(diǎn),求證:AE⊥PG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)氣象中心觀察和預(yù)測(cè):發(fā)生于M地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示,過(guò)線段OC上一點(diǎn)T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過(guò)的路程s(km).
(1)當(dāng)t=4時(shí),求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來(lái);
(3)若N城位于M地正南方向,且距M地650km,試判斷這場(chǎng)沙塵暴是否會(huì)侵襲到N城,如果會(huì),在沙塵暴發(fā)生后多長(zhǎng)時(shí)間它將侵襲到N城?如果不會(huì),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線焦點(diǎn)
且傾斜角的
直線
與拋物線
交于點(diǎn)
的面積為
.
(I)求拋物線的方程;
(II)設(shè)是直線
上的一個(gè)動(dòng)點(diǎn),過(guò)
作拋物線
的切線,切點(diǎn)分別為
直線
與直線
軸的交點(diǎn)分別為
點(diǎn)
是以
為圓心
為半徑的圓上任意兩點(diǎn),求
最大時(shí)點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為
,左頂點(diǎn)為
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作兩條相互垂直的直線分別與橢圓
交于(不同于點(diǎn)
的)
兩點(diǎn).試判斷直線
與
軸的交點(diǎn)是否為定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com