日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】【2015高考湖北(理)20】某廠用鮮牛奶在某臺(tái)設(shè)備上生產(chǎn)兩種奶制品.生產(chǎn)1噸產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時(shí),獲利1000元;生產(chǎn)1噸產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時(shí),獲利1200元.要求每天產(chǎn)品的產(chǎn)量不超過(guò)產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)兩種產(chǎn)品時(shí)間之和不超過(guò)12小時(shí). 假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個(gè)隨機(jī)變量,其分布列為

          W

          12

          15

          18

          P

          0.3

          0.5

          0.2

          該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利(單位:元)是一個(gè)隨機(jī)變量.

          )求的分布列和均值;

          若每天可獲取的鮮牛奶數(shù)量相互獨(dú)立,求3天中至少有1天的最大獲利超過(guò)10000元的概率.

          【答案】的分布列為:

          8160

          10200

          10800

          0.3

          0.5

          0.2

          ;()0.973.

          【解析】)設(shè)每天兩種產(chǎn)品的生產(chǎn)數(shù)量分別為,相應(yīng)的獲利為,

          則有 (1)

          目標(biāo)函數(shù)為

          當(dāng)時(shí),(1)表示的平面區(qū)域如圖1,三個(gè)頂點(diǎn)分別為

          變形為

          當(dāng)時(shí),直線軸上的截距最大,

          最大獲利

          當(dāng)時(shí),(1)表示的平面區(qū)域如圖2,三個(gè)頂點(diǎn)分別為

          變形為,

          當(dāng)時(shí),直線軸上的截距最大,

          最大獲利

          當(dāng)時(shí),(1)表示的平面區(qū)域如圖3,

          四個(gè)頂點(diǎn)分別為.

          變形為

          當(dāng)時(shí),直線軸上的截距最大,

          最大獲利

          故最大獲利的分布列為

          8160

          10200

          10800

          0.3

          0.5

          0.2

          因此,

          )由()知,一天最大獲利超過(guò)10000元的概率,

          由二項(xiàng)分布,3天中至少有1天最大獲利超過(guò)10000元的概率為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某產(chǎn)品的廣告費(fèi)用x與銷(xiāo)售額y的統(tǒng)計(jì)數(shù)據(jù)如表:

          廣告費(fèi)用x(萬(wàn)元)

          4

          2

          3

          5

          銷(xiāo)售額y(萬(wàn)元)

          49

          26

          39

          54

          根據(jù)上表可得回歸方程 = x+ 中的 為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí)銷(xiāo)售額為(
          A.63.6萬(wàn)元
          B.67.7萬(wàn)元
          C.65.5萬(wàn)元
          D.72.0萬(wàn)元

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)點(diǎn)到坐標(biāo)原點(diǎn)的距離和它到直線的距離之比是一個(gè)常數(shù)

          (1)求點(diǎn)的軌跡;

          (2)若時(shí)得到的曲線是,將曲線向左平移一個(gè)單位長(zhǎng)度后得到曲線,過(guò)點(diǎn)的直線與曲線交于不同的兩點(diǎn),過(guò)的直線分別交曲線于點(diǎn),設(shè) , ,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知集合A={x|﹣2≤x<5},B={x|3x﹣5≥x﹣1}.
          (1)求A∩B;
          (2)若集合C={x|﹣x+m>0},且A∪C=C,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(xt)=xt2+bxt
          (1)若b=2,且xt=log2t,t∈[ ,2],求f(xt)的最大值;
          (2)當(dāng)y=f(xt)與y=f(f(xt))有相同的值域時(shí),求b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)f(x)=5 + 的定義域?yàn)椋?/span>
          A.{x|1<x≤2}
          B.{x|1≤x≤2}
          C.{x|x≤2且x≠1}
          D.{x|x≥0且x≠1}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓.

          (1)若橢圓的右焦點(diǎn)坐標(biāo)為,求的值;

          (2)由橢圓上不同三點(diǎn)構(gòu)成三角形稱為橢圓的內(nèi)接三角形.若以為直角頂點(diǎn)的橢圓的內(nèi)接等腰直角三角形恰有三個(gè),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本小題滿分12分)已知橢圓的離心率為,橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,過(guò)點(diǎn)且不垂直于軸的直線與橢圓相交于兩點(diǎn).

          1)求橢圓的方程;

          2)求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在正方體中, 為棱上一動(dòng)點(diǎn), 為底面上一動(dòng)點(diǎn), 的中點(diǎn),若點(diǎn)都運(yùn)動(dòng)時(shí),點(diǎn)構(gòu)成的點(diǎn)集是一個(gè)空間幾何體,則這個(gè)幾何體是

          A. 棱柱 B. 棱臺(tái) C. 棱錐 D. 球的一部分

          查看答案和解析>>

          同步練習(xí)冊(cè)答案