日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知圓C經(jīng)過(guò)點(diǎn)A(﹣2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).
          (1)求圓C的方程;
          (2)若 =﹣2,求實(shí)數(shù)k的值;
          (3)過(guò)點(diǎn)(0,4)作動(dòng)直線m交圓C于E,F(xiàn)兩點(diǎn).試問(wèn):在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經(jīng)過(guò)點(diǎn)M(2,0)?若存在,求出圓P的方程;若不存在,請(qǐng)說(shuō)明理由.

          【答案】
          (1)解:設(shè)圓心C(a,a),半徑為r.

          因?yàn)閳AC經(jīng)過(guò)點(diǎn)A(﹣2,0),B(0,2),

          所以|AC|=|BC|=r,

          解得a=0,r=2,

          所以圓C的方程是x2+y2=4


          (2)解:因?yàn)? =2×2×cos< >=﹣2,

          的夾角為∠POQ,

          所以cos∠POQ=﹣ ,∠POQ=120°,

          所以圓心C到直線l:kx﹣y+1=0的距離d=1,

          又d= ,所以k=0


          (3)解:(。┊(dāng)直線m的斜率不存在時(shí),

          直線m經(jīng)過(guò)圓C的圓心C,

          此時(shí)直線m與圓C的交點(diǎn)為E(0,2),F(xiàn)(0,﹣2),

          EF即為圓C的直徑,而點(diǎn)M(2,0)在圓C上,

          即圓C也是滿足題意的圓.

          (ⅱ)當(dāng)直線m的斜率存在時(shí),設(shè)直線m:y=kx+4,

          ,消去y整理,得(1+k2)x2+8kx+12=0,

          由△=64k2﹣48(1+k2)>0,得

          設(shè)E(x1,y1),F(xiàn)(x2,y2),

          則有

          由①得 ,② ,③

          若存在以EF為直徑的圓P經(jīng)過(guò)點(diǎn)M(2,0),則ME⊥MF,

          所以 ,

          因此(x1﹣2)(x2﹣2)+y1y2=0,

          即x1x2﹣2(x1+x2)+4+y1y2=0,)

          ,

          所以16k+32=0,k=﹣2,滿足題意.

          此時(shí)以EF為直徑的圓的方程為x2+y2﹣(x1+x2)x﹣(y1+y2)y+x1x2+y1y2=0,

          亦即5x2+5y2﹣16x﹣8y+12=0.

          綜上,在以EF為直徑的所有圓中,

          存在圓P:5x2+5y2﹣16x﹣8y+12=0或x2+y2=4,使得圓P經(jīng)過(guò)點(diǎn)M(2,0)


          【解析】(1)設(shè)圓心C(a,a),半徑為r.|AC|=|BC|=r,由此能求出圓C的方程.(2)由 =2×2×cos< >=﹣2,得∠POQ=120°,圓心C到直線l:kx﹣y+1=0的距離d=1,由此能求出k=0.(3)當(dāng)直線m的斜率不存在時(shí),圓C也是滿足題意的圓;當(dāng)直線m的斜率存在時(shí),設(shè)直線m:y=kx+4,由 ,得(1+k2)x2+8kx+12=0,由此利用根的判別式、韋達(dá)定理,結(jié)合已知條件能求出在以EF為直徑的所有圓中,存在圓P:5x2+5y2﹣16x﹣8y+12=0或x2+y2=4,使得圓P經(jīng)過(guò)點(diǎn)M(2,0).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】濱湖區(qū)擬建一主題游戲園,該游戲園為四邊形區(qū)域ABCD,其中三角形區(qū)城ABC為主題活動(dòng)區(qū),其中∠ACB=60°,∠ABC=45°,AB=12 m;AD、CD為游客通道(不考慮寬度),且∠ADC=120°,通道AD、CD圍成三角形區(qū)域ADC為游客休閑中心,供游客休憩.

          (1)求AC的長(zhǎng)度;
          (2)記游客通道AD與CD的長(zhǎng)度和為L(zhǎng),求L的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某工廠生產(chǎn)某種水杯,每個(gè)水杯的原材料費(fèi)、加工費(fèi)分別為30元、m(m為常數(shù),且2m3),設(shè)每個(gè)水杯的出廠價(jià)為x(35x41),根據(jù)市場(chǎng)調(diào)查,水杯的日銷售量與ex(e為自然對(duì)數(shù)的底數(shù))成反比例,已知每個(gè)水杯的出廠價(jià)為40元時(shí),日銷售量為10個(gè).

          (1)求該工廠的日利潤(rùn)y()與每個(gè)水杯的出廠價(jià)x()的函數(shù)關(guān)系式;

          (2)當(dāng)每個(gè)水杯的出廠價(jià)為多少元時(shí),該工廠的日利潤(rùn)最大,并求日利潤(rùn)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一次猜獎(jiǎng)游戲中,1,2,3,4四扇門里擺放了, , , 四件獎(jiǎng)品(每扇門里僅放一件).甲同學(xué)說(shuō):1號(hào)門里是,3號(hào)門里是;乙同學(xué)說(shuō):2號(hào)門里是,3號(hào)門里是;丙同學(xué)說(shuō):4號(hào)門里是,2號(hào)門里是;丁同學(xué)說(shuō):4號(hào)門里是,3號(hào)門里是.如果他們每人都猜對(duì)了一半,那么4號(hào)門里是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}是首項(xiàng)為a1= ,公比q= 的等比數(shù)列,設(shè)bn+2=3 an(n∈N*),數(shù)列{cn}滿足cn=anbn
          (1)求證:{bn}是等差數(shù)列;
          (2)求數(shù)列{cn}的前n項(xiàng)和Sn;
          (3)若cn +m﹣1對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某中學(xué)高三年級(jí)從甲、乙兩個(gè)班級(jí)各選出7名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖,其中甲班學(xué)生的平均分是85,乙班學(xué)生成績(jī)的中位數(shù)是83,則x+y的值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】電視臺(tái)播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時(shí),需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時(shí),連續(xù)劇播放時(shí)長(zhǎng)、廣告播放時(shí)長(zhǎng)、收視人次如下表所示:

          連續(xù)劇播放時(shí)長(zhǎng)(分鐘)

          廣告播放時(shí)長(zhǎng)分鐘

          收視人次萬(wàn)

          70

          5

          60

          60

          5

          25

          已知電視臺(tái)每周安排的甲、乙連續(xù)劇的總播放時(shí)間不多于600分鐘,廣告的總播放時(shí)間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用表示每周計(jì)劃播出的甲、乙兩套連續(xù)劇的次數(shù)

          (1)列出滿足題目條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域

          2問(wèn)電視臺(tái)每周播出甲、乙兩套連續(xù)劇各多少次,才能使收視人次最多

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知平面內(nèi)三個(gè)向量: =(3,2), =(﹣1,2), =(4,1)
          (1)若( +k )∥(2 ),求實(shí)數(shù)k的值;
          (2)設(shè) =(x,y),且滿足( + )⊥( ),| |= ,求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線的參數(shù)方程為,( 為參數(shù), ),曲線的極坐標(biāo)方程為.

          (1)求曲線的直角坐標(biāo)方程;

          (2)設(shè)直線與曲線相交于, 兩點(diǎn),當(dāng)變化時(shí),求的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案