日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知p:函數(shù)f(x)=2|x-a|在區(qū)間(4,+∞)上單調(diào)遞增;q:loga2<1.如果“?p”是真命題,“p或q”也是真命題,則實數(shù)a的取值范圍是( 。
          分析:根據(jù)復(fù)合函數(shù)單調(diào)性確定函數(shù)f(x)=2|x-a|在區(qū)間(4,+∞)上單調(diào)遞增的實數(shù)a的取值范圍,求出其補集;再結(jié)合命題q為真時,求出a的范圍,最后結(jié)合復(fù)合命題的真假分情況討論后即可得到結(jié)論.
          解答:解:∵函數(shù)f(x)=2|x-a|的外函數(shù)y=2u在其定義域R上為增函數(shù)
          若函數(shù)f(x)=2|x-a|在區(qū)間(4,+∞)上單調(diào)遞增
          則內(nèi)函數(shù)u=|x-a|在區(qū)間(4,+∞)也要為增函數(shù)
          又∵u=|x-a|在區(qū)間[a,+∞)為增函數(shù)
          ∴(4,+∞)⊆[a,+∞)
          即a≤4;
          q:由loga2<1得0<a<1或a>2
          如果“¬p”為真命題,則p為假命題,即a>4
          又因為p或q為真,則q為真,即0<a<1或a>2
          0<a<1或a>2
          a>4
          ⇒a>4,
          可得實數(shù)a的取值范圍是a>4.
          故選A.
          點評:本題主要考查復(fù)合命題的真假以及復(fù)合函數(shù)的單調(diào)性的判定和對數(shù)函數(shù)的性質(zhì)的綜合運用,關(guān)鍵是把兩個命題等價轉(zhuǎn)化.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知p:函數(shù)f(x)=x2+mx+1有兩個零點,q:?x∈R,4x2+4(m-2)x+1>0.若p∨q為真,p∧q為假,則實數(shù)m的取值范圍為( 。
          A、(-∞,-2)∪[3,+∞)B、(-∞,-2)∪(1,2]∪[3,+∞)C、(1,2]∪[3,+∞)D、(-∞,-2)∪(1,2]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知p:函數(shù)f(x)=x2-2mx+4在[2,+∞)上單調(diào)遞增;q:關(guān)于x的不等式4x2+4(m-2)x+1>0的解集為R.若p∨q為真命題,p∧q為假命題,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知p:函數(shù)f(x)=logax(a>0且a≠1)在(0,+∞)上單調(diào)遞增;q:關(guān)于x的不等式ax2-ax+1>0的解集為R.若“p且q”為假,“p或q”為真,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知p:函數(shù)f(x)=x2+4x-a有零點,q:不等式x2-ax+1>0對?x∈R恒成立.若“p∨q為真、p∧q為假”,求實數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案