日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知橢圓C,經(jīng)過橢圓C的右焦點(diǎn)F且斜率為kk≠0)的直線l交橢圓G于A、B兩點(diǎn),M為線段AB的中點(diǎn),設(shè)O為橢圓的中心,射線OM交橢圓于N點(diǎn).

          (1)是否存在k,使對(duì)任意m>0,總有成立?若存在,求出所有k的值;

          (2)若,求實(shí)數(shù)k的取值范圍.

          (1)k=±1(2)


          解析:

          (1)橢圓C 1分

          直線ABykx-m),                                                                                                   2分

          ,(10k2+6)x2-20k2mx+10k2m2-15m2=0.    3分

          設(shè)Ax1,y1)、Bx2,y2),則x1x2,x1x2    4分

          xm                               5分

          若存在k,使ON的中點(diǎn),∴

          即N點(diǎn)坐標(biāo)為.                             6分

          由N點(diǎn)在橢圓上,則                7分

          即5k4-2k2-3=0.∴k2=1或k2=-(舍).

          故存在k=±1使                                                                                  8分

          (2)x1x2k2x1-m)(x2m

          =(1+k2x1x2k2m(x1x2)+k2m2

          =(1+k2)·            10分

                           12分

          k2-15≤-20k2-12,k2≤k≠0.                                    14分

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
          (1)已知橢圓C1
          x2
          4
          +y2=1和C2
          x2
          16
          +
          y2
          4
          =1,判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請(qǐng)說明理由;
          (2)已知直線l:y=x+1,在橢圓Cb上是否存在兩點(diǎn)M、N關(guān)于直線l對(duì)稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知橢圓C:
          x2
          b2
          +
          y2
          a2
          =1(a>b>0)
          的左、右焦點(diǎn)分別為F1(0,c)、F2(0,-c)(c>0),拋物線P:x2=2py(p>0)的焦點(diǎn)與F1重合,過F2的直線l與拋物線P相切,切點(diǎn)E在第一象限,與橢圓C相交于A、B兩點(diǎn),且
          F2B
          =λ
          AF2

          (1)求證:切線l的斜率為定值;
          (2)若動(dòng)點(diǎn)T滿足:
          ET
          =μ(
          EF1
          +
          EF2
          ),μ∈(0,
          1
          2
          )
          ,且
          ET
          OT
          的最小值為-
          5
          4
          ,求拋物線P的方程;
          (3)當(dāng)λ∈[2,4]時(shí),求橢圓離心率e的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率e=
          3
          2
          ,F(xiàn)1、F2分別為橢圓C的左、右焦點(diǎn),A(0,b),且
          F1A
          F2A
          =-2過左焦點(diǎn)F1作直線l交橢圓于P1、P2兩點(diǎn).
          (1)求橢圓C的方程;
          (2)若直線l的傾斜角a∈[
          π
          3
          ,
          3
          ],直線OP1,OP2與直線x=-
          4
          3
          3
          分別交于點(diǎn)S、T,求|ST|的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的焦點(diǎn)為F1(1,0)、F2(-1,0),離心率為
          2
          2
          ,過點(diǎn)A(2,0)的直線l交橢圓C于M、N兩點(diǎn).
          (1)求橢圓C的方程;
          (2)①求直線l的斜率k的取值范圍;
          ②在直線l的斜率k不斷變化過程中,探究∠MF1A和∠NF1F2是否總相等?若相等,請(qǐng)給出證明,若不相等,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•梅州一模)如圖,已知橢圓C:
          x2
          a2
          +y2=1(a>1)的上頂點(diǎn)為A,右焦點(diǎn)為F,直線AF與圓M:x2+y2-6x-2y+7=0相切.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)不過點(diǎn)A的動(dòng)直線l與橢圓C相交于PQ兩點(diǎn),且
          AP
          AQ
          =0.求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案