【題目】為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關系,下表記錄了小李某月1號到5號每天打籃球時間(單位:小時)與當天投籃命中率
之間的關系:
時間 | 1 | 2 | 3 | 4 | 5 |
命中率 | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
小李這5天的平均投籃命中率;用線性回歸分析的方法,預測小李該月6號打6小時籃球的投籃命中率.
附:線性回歸方程中系數計算公式
,
,
【答案】預測小李該月6號打6小時籃球的投籃命中率為
【解析】試題分析:(1)先求出小李這 天的平均投籃命中率,從而可得樣本中心點的坐標,利用
求出
,樣本中心點的坐標代入回歸方程可求得
,進而求出線性回歸方程,先再令
,即可預測小李該月
號打
小時籃球的投籃命中率.
試題解析:小李這5天的平均投籃命中率
,
,
,
∴線性回歸方程,則當
時,
∴預測小李該月6號打6小時籃球的投籃命中率為.
【方法點晴】本題主要考查散點圖的畫法和線性回歸方程,屬于難題.求回歸直線方程的步驟:①依據樣本數據畫出散點圖,確定兩個變量具有線性相關關系;②計算的值;③計算回歸系數
;④寫出回歸直線方程為
;(2) 回歸直線過樣本點中心
是一條重要性質,利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.
科目:高中數學 來源: 題型:
【題目】已知為定義在R上的奇函數,當
時,
為二次函數,且滿足
,
在
上的兩個零點為
和
.
(1)求函數在R上的解析式;
(2)作出的圖象,并根據圖象討論關于
的方程
根的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著網絡的發(fā)展,人們可以在網絡上購物、玩游戲、聊天、導航等,所以人們對上網流量的需求越來越大.某電信運營商推出一款新的“流量包”套餐.為了調查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機抽取50個用戶,按年齡分組進行訪談,統(tǒng)計結果如右表.
組 號 | 年齡 | 訪談 人數 | 愿意 使用 |
1 | [18,28) | 4 | 4 |
2 | [28,38) | 9 | 9 |
3 | [38,48) | 16 | 15 |
4 | [48,58) | 15 | 12 |
5 | [58,68) | 6 | 2 |
(Ⅰ)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取12人,則各組應分別抽取多少人?
(Ⅱ)若從第5組的被調查者訪談人中隨機選取2人進行追蹤調查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.
(Ⅲ)按以上統(tǒng)計數據填寫下面2×2列聯表,并判斷以48歲為分界點,能否在犯錯誤不超過1%的前提下認為,是否愿意選擇此款“流量包”套餐與人的年齡有關?
年齡不低于48歲的人數 | 年齡低于48歲的人數 | 合計 | |
愿意使用的人數 | |||
不愿意使用的人數 | |||
合計 |
參考公式:,其中:n=a+b+c+d.
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】祖暅原理:“冪勢既同,則積不容異”.它是中國古代一個涉及幾何體體積的問題,意思是兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設為兩個同高的幾何體,
的體積不相等,
在等高處的截面積不恒相等,根據祖暅原理可知,
是
的( )
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法:
①將一組數據中的每個數據都加上或減去同一個常數后,均值與方差都不變;
②設有一個回歸方程,變量x增加一個單位時,y平均增加3個單位;
③線性回歸方程必經過點
;
④在吸煙與患肺病這兩個分類變量的計算中,從獨立性檢驗知,有99%的把握認為吸煙與患肺病有關系時,我們說現有100人吸煙,那么其中有99人患肺病.其中錯誤的個數是( )
A. 0
B. 1
C. 2
D. 3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題p:f(x)=2/(x-m)在區(qū)間(1,+∞)上是減函數;;命題q:2x-1+2m>0對任意x∈R恒成立.若(p)∧q為真,求實數m的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com