日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=+lnx,若函數(shù)f(x)在[1,+∞)上為增函數(shù),則正實數(shù)a的取值范圍為________.
          [1,+∞)
          ∵f(x)=+lnx,
          ∴f′(x)= (a>0),
          ∵函數(shù)f(x)在[1,+∞)上為增函數(shù),
          ∴f′(x)=≥0對x∈[1,+∞)恒成立,
          ∴ax-1≥0對x∈[1,+∞)恒成立,即a≥對x∈[1,+∞)恒成立,∴a≥1.檢驗:當(dāng)a=1時滿足題意.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          已知函數(shù).
          (1)當(dāng)時,求的極值;
          (2)若在區(qū)間上單調(diào)遞增,求b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知可導(dǎo)函數(shù)為定義域上的奇函數(shù),當(dāng)時,有,則的取值范圍為(   )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          若函數(shù) 在其定義域的一個子區(qū)間上不是單調(diào)函數(shù),則實數(shù)的取值范圍_______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知函數(shù)f(x)=(x2-3x+3)ex,設(shè)t>-2,函數(shù)f(x)在[-2,t]上為單調(diào)函數(shù)時,t的取值范圍是________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          函數(shù)f(x)=x2-2lnx的單調(diào)遞減區(qū)間是(  )
          A.(0,1]B.[1,+∞)
          C.(-∞,-1]∪(0,1]D.[-1,0)∪(0,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù),
          (1)若函數(shù)f(x)在R上單調(diào)遞增,求實數(shù)a的取值范圍;
          (2)若函數(shù)f(x)在區(qū)間(-1,1)上單調(diào)遞減,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)f(x)=ln x+2x,g(x)=a(x2+x).
          (1)若a=,求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
          (2)若f(x)≤g(x)恒成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分14分)矩形紙片ABCD的邊AB=6,AD=10,點E、F分別在邊AB和BC上(不含端點). 現(xiàn)將紙片的右下角沿EF翻折,使得頂點B翻折后的新位置B1恰好落在邊AD上. 設(shè),EF=l,l關(guān)于t的函數(shù)為.

          試求:(1)函數(shù)f(t)的定義域;
          (2)函數(shù)f(t)的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案