【題目】古希臘有一著名的尺規(guī)作圖題“倍立方問題”:求作一個正方體,使它的體積等于已知立方體體積的2倍,倍立方問題可以利用拋物線(可尺規(guī)作圖)來解決,首先作一個通徑為(其中正數(shù)
為原立方體的棱長)的拋物線
,如圖,再作一個頂點與拋物線
頂點
重合而對稱軸垂直的拋物線
,且與
交于不同于點
的一點
,自點
向拋物線
的對稱軸作垂線,垂足為
,可使以
為棱長的立方體的體積為原立方體的2倍.
(1)建立適當?shù)钠矫嬷苯亲鴺讼,求拋物線的標準方程;
(2)為使以為棱長的立方體的體積為原立方體的2倍,求拋物線
的標準方程(只須以一個開口方向為例).
科目:高中數(shù)學 來源: 題型:
【題目】某次足球比賽共12支球隊參加,分三個階段進行.
(1)小組賽:經(jīng)抽簽分成甲、乙兩組,每組6隊進行單循環(huán)比賽,以積分及凈剩球數(shù)取前兩名;
(2)半決賽:甲組第一名與乙組第二名,乙組第一名與甲組第二名作主客場交叉淘汰賽(每兩隊主客場各賽一場)決出勝者;
(3)決賽:兩個勝隊參加決賽一場,決出勝負.
問全程賽程共需比賽多少場?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某單位用2160萬元購得一塊空地,計劃在該空地上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測算,如果將樓房建為層,則每平方米的平均建筑費用為
(單位:元).
(1)寫出樓房每平方米的平均綜合費用關于建造層數(shù)
的函數(shù)關系式;
(2)該樓房應建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?
(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列,
的首項
,且滿足
,
,其中
,設數(shù)列
,
的前項和分別為
,
.
(Ⅰ)若不等式對一切
恒成立,求
.
(Ⅱ)若常數(shù)且對任意的
,恒有
,求
的值.
(Ⅲ)在(Ⅱ)的條件下且同時滿足以下兩個條件:
(。┤舸嬖谖ㄒ徽麛(shù)的值滿足
;
(ⅱ)恒成立.試問:是否存在正整數(shù),使得
,若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題13分)已知函數(shù)f(x)=-
(a>0,x>0).
(1)求證:f(x)在(0,+∞)上是單調(diào)遞增函數(shù);
(2)若f(x)在[,2]上的值域是[
,2],求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地棚戶區(qū)改造建筑平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內(nèi)接四邊形是原棚戶區(qū)建筑用地,測量可知邊界
萬米,
萬米,
萬米.
(1)請計算原棚戶區(qū)建筑用地的面積及
的長;
(2)因地理條件的限制,邊界不能更改,而邊界
可以調(diào)整,為了提高棚戶區(qū)建筑用地的利用率,請在圓弧
上設計一點
,使得棚戶區(qū)改造后的新建筑用地
的面積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點。那么,當小圓這樣滾過大圓內(nèi)壁的一周,點M,N在大圓內(nèi)所繪出的圖形大致是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設動點是圓
上任意一點,過
作
軸的垂線,垂足為
,若點
在線段
上,且滿足
.
(1)求點的軌跡
的方程;
(2)設直線與
交于
,
兩點,點
坐標為
,若直線
,
的斜率之和為定值3,求證:直線
必經(jīng)過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=aln(x2+1)+bx存在兩個極值點x1 , x2 .
(1)求證:|x1+x2|>2;
(2)若實數(shù)λ滿足等式f(x1)+f(x2)+a+λb=0,試求λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com