日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x2+x-6,g(x)=2x+1,α、β是方程f(x)=0的兩個(gè)根(α>β).
          (1)求α、β的值;
          (2)數(shù)列{an}滿足:a1=1,an+1=g(an),求an;
          (3)數(shù)列{an}滿足:a1=3,an+1=an-
          f(an)
          g(an)
          ,(n=1,2,3,…)
          bn=ln
          an
          an
          ,(n=1,2,…),求證數(shù)列{bn}為等比數(shù)列,并求{bn}的前n項(xiàng)和Sn
          分析:(1)先求出方程的根,再利用α、β是方程f(x)=0的兩個(gè)根(α>β),即可得到結(jié)論;
          (2)證明{an+1}是以2為首項(xiàng),2為公比的等比數(shù)列,即可求得an;
          (3)確定數(shù)列相鄰項(xiàng)的關(guān)系,可得等比數(shù)列,再利用等比數(shù)列的求和公式,即可得到結(jié)論.
          解答:(1)解:由x2+x-6=0,可得x=2或-3,
          ∵α、β是方程f(x)=0的兩個(gè)根(α>β),∴α=2,β=-3;
          (2)解:∵g(x)=2x+1,∴an+1=g(an)=2an+1
          ∴an+1+1=2(an+1)
          ∵a1=1,
          ∴{an+1}是以2為首項(xiàng),2為公比的等比數(shù)列
          ∴an+1=2n,即an=2n-1;
          (3)證明:an+1=an-
          f(an)
          g(an)
          =
          an2+6
          2an+1

          ∴an+1+3=
          an2+6
          2an+1
          +3=
          (an+3)2
          2an+1
          ,an+1-2=
          (an-2)2
          2an+1

          bn=ln
          an
          an
          =ln
          an+3
          an-2
          =2ln
          an-1+3
          an-1-2
          =2bn-1
          ∴{bn)是首項(xiàng)為ln
          a1+3
          a1-2
          =ln6,公比為2的等比數(shù)列
          ∴{bn}的前n項(xiàng)和Sn=
          (1-2n)ln6
          1-2
          =(2n-1)ln6.
          點(diǎn)評(píng):本題考查數(shù)列與函數(shù)的關(guān)系,考查等比數(shù)列的判定,考查等比數(shù)列的通項(xiàng)與求和,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案