日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在多面體中,四邊形是正方形,平面平面,.

          (1)求證:平面;

          (2)在線段上是否存在點(diǎn),使得平面與平面所成的銳二面角的大小為,若存在,求出的值;若不存在,說明理由.

          【答案】(1)證明見解析;(2)答案見解析.

          【解析】

          (1)由面面垂直的性質(zhì)定理證明線面垂直即可;

          (2)在平面DAE內(nèi),過DAD的垂線DH,以點(diǎn)D為坐標(biāo)原點(diǎn),DA,DC,DH所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,利用平面FAG的法向量和平面EAD的法向量求二面角的余弦值即可確定線段上是否存在點(diǎn).

          (1)∵平面ADE⊥平面ABCD,平面ADE平面ABCD=AD,

          正方形中CDAD,∴CD⊥平面ADE.

          (2)由(1)知平面ABCD⊥平面AED.

          在平面DAE內(nèi),過DAD的垂線DH,則DH⊥平面ABCD,

          以點(diǎn)D為坐標(biāo)原點(diǎn),DA,DC,DH所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,

          ,

          ,

          設(shè),則.

          設(shè)平面FAG的一個(gè)法向量,則,

          ,即

          可得:,

          易知平面EAD的一個(gè)法向量,

          由已如得.

          化簡(jiǎn)可得:,即.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左頂點(diǎn)為,兩個(gè)焦點(diǎn)與短軸一個(gè)頂點(diǎn)構(gòu)成等腰直角三角形,過點(diǎn)且與x軸不重合的直線l與橢圓交于M,N不同的兩點(diǎn).

          (Ⅰ)求橢圓P的方程;

          (Ⅱ)當(dāng)AM與MN垂直時(shí),求AM的長(zhǎng);

          (Ⅲ)若過點(diǎn)P且平行于AM的直線交直線于點(diǎn)Q,求證:直線NQ恒過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)ax(ab∈Z),曲線yf(x)在點(diǎn)(2f(2))處的切線方

          程為y3.

          (1)f(x)的解析式;

          (2)證明:曲線yf(x)上任一點(diǎn)的切線與直線x1和直線yx所圍三角形的面積為定值,

          并求出此定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)拋物線的焦點(diǎn)為,過且斜率為的直線交于,兩點(diǎn),

          (1)求的方程;

          (2)求過點(diǎn),且與的準(zhǔn)線相切的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.

          (1)求的直角坐標(biāo)方程和的直角坐標(biāo);

          (2)設(shè)交于,兩點(diǎn),線段的中點(diǎn)為,求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若上單調(diào)遞減,求的取值范圍;

          (2)若處取得極值,判斷當(dāng)時(shí),存在幾條切線與直線平行,請(qǐng)說明理由;

          (3)若有兩個(gè)極值點(diǎn),求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.

          1)求橢圓C的標(biāo)準(zhǔn)方程;

          2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過FTF的垂線交橢圓C于點(diǎn)PQ.

          i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));

          ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.

          (1)求的直角坐標(biāo)方程和的直角坐標(biāo);

          (2)設(shè)交于,兩點(diǎn),線段的中點(diǎn)為,求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè) .

          (1)證明: 上單調(diào)遞減;

          (2)若,證明: .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案