日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,兩圓內(nèi)切于點(diǎn)T,大圓的弦AB切小圓于點(diǎn)C.TA,TB與小圓分別相交于點(diǎn)E,F.FE的延長線交兩圓的公切線TP于點(diǎn)P.

          求證:(1) ;

          (2)AC·PFBC·PT.

          【答案】(1) 見解析(2) 見解析

          【解析】試題分析:(1)根據(jù)內(nèi)錯(cuò)角相等得EFAB,再由相切得OCEF,即得結(jié)論(2)由切割線定理得AC·TEBC·TF.再根據(jù)三角形相似得PT·TFPF·TE,即得結(jié)論

          試題解析:證明:(1)設(shè)小圓的圓心為點(diǎn)O,連接OC.

          AB切小圓于點(diǎn)C,∴OCAB.

          ∵∠1=∠3=∠2,

          EFAB,∴OCEF,

          .

          (2)∵EFAB,∴.

          AB切小圓于點(diǎn)C,

          AC2AE·AT,BC2BF·BT.

          .

          PT是公切線,∴∠PTF=90°,

          TF是⊙O的直徑,

          TEPF,△PTF∽△TEF

          ,∴

          AC·PFBC·PT.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示的幾何體是由棱臺 和棱錐拼接而成的組合體,其底面四邊形是邊長為 的菱形,且 平面 ,

          1)求證:平面 平面 ;

          2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=4sin2 + )sinx+(cosx+sinx)(cosx﹣sinx)﹣1.
          (1)化簡f(x);
          (2)常數(shù)ω>0,若函數(shù)y=f(ωx)在區(qū)間 上是增函數(shù),求ω的取值范圍;
          (3)若函數(shù)g(x)= 的最大值為2,求實(shí)數(shù)a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= cos4x+2sinxcosx﹣ sin4x.
          (1)當(dāng)x∈[0, ]時(shí),求f(x)的最大值、最小值以及取得最值時(shí)的x值;
          (2)設(shè)g(x)=3﹣2m+mcos(2x﹣ )(m>0),若對于任意x1∈[0, ],都存在x2∈[0, ],使得f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)= ,若f(0)是f(x)的最小值,則a的取值范圍為(
          A.[﹣1,2]
          B.[﹣1,0]
          C.[1,2]
          D.[0,2]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若m,n∈[﹣1,1],m+n≠0 時(shí),有
          (1)求證:f(x)在[﹣1,1]上為增函數(shù);
          (2)求不等式 的解集;
          (3)若 對所有 恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ADEF與梯形ABCD所在的閏面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M為CE的中點(diǎn).

          (1)求證:BM∥平面ADEF;
          (2)求平面BEC與平面ADEF所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐中, 平面 的中點(diǎn), , .

          (1)求證: ;

          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的一個(gè)焦點(diǎn)為,其左頂點(diǎn)在圓上.

          Ⅰ)求橢圓的方程;

          直線交橢圓兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對稱點(diǎn)為(點(diǎn)與點(diǎn)不重合),且直線軸的交于點(diǎn),試問的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由

          查看答案和解析>>

          同步練習(xí)冊答案