日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知a∈R,函數(shù)f(x)=x2(x-a),若f′(1)=1.
          (1)求a的值并求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程y=g(x);
          (2)設(shè)h(x)=f′(x)+g(x),求h(x)在[0,1]上的最大值與最小值.
          分析:(1)欲求a 值,先求導(dǎo)數(shù),再結(jié)合f′(1)=1即得;欲求切線方程,只須求出其斜率的正負(fù)即可,故先利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
          (2)欲求h(x)在[0,1]上的最大值與最小值,利用導(dǎo)數(shù)解決,研究閉區(qū)間上的最值問題,先求出函數(shù)的極值,比較極值和端點(diǎn)處的函數(shù)值的大小,最后確定出最大值與最小值即可.
          解答:解:(1)f'(x)=3x2-2ax,由f'(1)=1得3-2a=1,所以a=1;
          當(dāng)a=1時(shí),f(x)=x3-x2,f(1)=0,又f'(1)=1,
          所以曲線y=f(x)y=f(x)在(1,f(1))處的切線方程為y-0=1×(x-1),即g(x)=x-1;
          (2)由(1)得h(x)=3x2-x-1=3(x-
          1
          6
          )2-
          13
          12
          ,
          又h(0)=-1,h(1)=1,h(
          1
          6
          )=-
          13
          12
          ,
          ∴h(x)在[0,1]上有最大值1,有最小值
          13
          12
          點(diǎn)評(píng):本小題主要考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、函數(shù)的最值及其幾何意義、直線的方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a∈R,函數(shù)f(x)=
          1
          12
          x3+
          a+1
          2
          x2+(4a+1)x

          (Ⅰ)如果函數(shù)g(x)=f′(x)是偶函數(shù),求f(x)的極大值和極小值;
          (Ⅱ)如果函數(shù)f(x)是(-∞,?+∞)上的單調(diào)函數(shù),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a∈R,函數(shù)f(x)=ln(x+1)-x2+ax+2.
          (1)若函數(shù)f(x)在[1,+∞)上為減函數(shù),求實(shí)數(shù)a的取值范圍;
          (2)令a=-1,b∈R,已知函數(shù)g(x)=b+2bx-x2.若對(duì)任意x1∈(-1,+∞),總存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a∈R,函數(shù)f(x)=
          a
          x
          +lnx-1,g(x)=(lnx-1)
          e
          x
           
          +x
          (其中e為自然對(duì)數(shù)的底).
          (1)當(dāng)a>0時(shí),求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
          (2)是否存在實(shí)數(shù)x0∈(0,e],使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直?若存在求出x0的值,若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•太原一模)已知a∈R,函數(shù) f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)是偶函數(shù),則曲線y=f(x)在原點(diǎn)處的切線方程為
          3x+y=0
          3x+y=0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•浙江)已知a∈R,函數(shù)f(x)=x3-3x2+3ax-3a+3.
          (1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
          (2)當(dāng)x∈[0,2]時(shí),求|f(x)|的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案