【題目】已知數(shù)列的前
項(xiàng)和為
,且滿足
.
(1)求證:數(shù)列為等比數(shù)列;
(2)若,求
的前
項(xiàng)和
.
【答案】(1)證明見(jiàn)解析;(2).
【解析】試題分析:(1)利用,化簡(jiǎn)得
,故
是等比數(shù)列;(2)由于
,相等于一個(gè)等差數(shù)列乘以一個(gè)等比數(shù)列,所以考慮用錯(cuò)位相減求和法求前
項(xiàng)和為
.
試題解析:
(1)當(dāng)時(shí),
,解得
;...............1分
當(dāng)時(shí),
,兩式相減得
,................3分
化簡(jiǎn)得,所以數(shù)列
是首項(xiàng)為1,公比為-1的等比數(shù)列..........5分
(2)由(1)可得,所以
,下提供三種求和方法供參考:.......6分
【錯(cuò)位相減法】,
....................8分
兩式相減得................9分
....................10分
,....................11分
所以數(shù)列的前
項(xiàng)和
.........................12分
【并項(xiàng)求和法】
當(dāng)為偶數(shù)時(shí),
;........................9分
當(dāng)為奇數(shù)時(shí),
為偶數(shù),
;............11分
綜上,數(shù)列的前
項(xiàng)和
.........................12分
【裂項(xiàng)相消法】
因?yàn)?/span>..............9分
所以
,
所以數(shù)列的前
項(xiàng)和
..................12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解防震知識(shí)在中學(xué)生中的普及情況,某地震部門命制了一份滿分為10分的問(wèn)卷到紅星中學(xué)做問(wèn)卷調(diào)查.該校甲、乙兩個(gè)班各被隨機(jī)抽取名學(xué)生接受問(wèn)卷調(diào)查,甲班
名學(xué)生得分為5,8,9,9,9乙班5名學(xué)生得分為6,7,8,9,10.
(Ⅰ)請(qǐng)你估計(jì)甲乙兩個(gè)班中,哪個(gè)班的問(wèn)卷得分更穩(wěn)定一些;
(Ⅱ)如果把乙班5名學(xué)生的得分看成一個(gè)總體,并用簡(jiǎn)單隨機(jī)抽樣方法從中抽取樣本容量為2的樣本,求樣本平均數(shù)與總體平均數(shù)之差的絕對(duì)值不小于1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知圓的圓心在直線
上,且該圓存在兩點(diǎn)關(guān)于直線
對(duì)稱,又圓
與直線
相切,過(guò)點(diǎn)
的動(dòng)直線
與圓
相交于
兩點(diǎn),
是
的中點(diǎn),直線
與
相交于點(diǎn)
.
(1)求圓的方程;
(2)當(dāng)時(shí),求直線
的方程;
(3)是否為定值?如果是,求出其定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓:
的離心率
,過(guò)點(diǎn)
,
的直線與原點(diǎn)的距離為
,
是橢圓上任一點(diǎn),從原點(diǎn)
向圓
:
作兩條切線,分別交橢圓于點(diǎn)
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若記直線,
的斜率分別為
,
,試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
如圖,在五棱錐中,
,且
.
(1)已知點(diǎn)在線段
上,確定
的位置,使得
;
(2)點(diǎn)分別在線段
上,若沿直線
將四邊形
向上翻折,
與
恰好重合,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時(shí)刻航行至
處,此時(shí)測(cè)得其東北方向與它相距32海里的
處有一外國(guó)船只,且
島位于海監(jiān)船正東
海里處.
(1)求此時(shí)該外國(guó)船只與島的距離;
(2)觀測(cè)中發(fā)現(xiàn),此外國(guó)船只正以每小時(shí)8海里的速度沿正南方向航行,為了將該船攔截在離島24海里處,不讓其進(jìn)入
島24海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車間為了制作某個(gè)零件,需從一塊扇形的鋼板余料(如圖1)中按照?qǐng)D2的方式裁剪一塊矩形鋼板,其中頂點(diǎn)
、
在半徑
上,頂點(diǎn)
在半徑
上,頂點(diǎn)
在
上,
,
.設(shè)
,矩形
的面積為
.
(1)用含的式子表示
,
的長(zhǎng);
(2)試將表示為
的函數(shù);
(3)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)用反證法證明:在上,不存在不同的兩點(diǎn)
,
,使得
的圖象在這兩點(diǎn)處的切線相互平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子中裝有5張編號(hào)依次為1、2、3、4、5的卡片,這5 張卡片除號(hào)碼外完全相同.現(xiàn)進(jìn)行有放回的連續(xù)抽取2 次,每次任意地取出一張卡片.
(1)求出所有可能結(jié)果數(shù),并列出所有可能結(jié)果;
(2)求事件“取出卡片號(hào)碼之和不小于7 或小于5”的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com