日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x2,g(x)=x-1
          (1)若?x∈R使f(x)<bg(x),求實數(shù)b的取值范圍;
          (2)設F(x)=f(x)-mg(x)+1-m-m2,命題p:F(x)在區(qū)間[-3,-2]上單調遞減,命題q:方程x2+mx+1=0有兩不等的正實根,若命題p∧q為真,求實數(shù)m的取值范圍.
          分析:(1)把?x∈R使f(x)<b•g(x),轉化為?x∈R,x2-bx+b<0,再利用二次函數(shù)的性質得△=(-b)2-4b>0,解出實數(shù)b的取值范圍;
          (2)先求得F(x)=x2-mx+1-m2,再對判斷函數(shù)的單調性,可求出命題p為真時實數(shù)m的取值范圍,進而根據(jù)方程的根的個數(shù)與△的關系,求出命題q實數(shù)m的取值范圍,最后由命題p∧q為真,則命題p與q均為真,求出兩個范圍的交集得到答案.
          解答:解:(1)由?x∈R,f(x)<b•g(x),得?x∈R,x2-bx+b<0,
          ∴△=(-b)2-4b>0,解得b<0或b>4,
          ∴實數(shù)b的取值范圍是(-∞,0)∪(4,+∞);
          (2)由題設得F(x)=x2-mx+1-m2,
          其圖象是開口朝上且對稱軸方程為x=
          m
          2
          的拋物線,
          若F(x)在區(qū)間[-3,-2]則
          m
          2
          ≥-2
          即m≥-4
          若x2+mx+1=0有兩不等的正實根,
          m2-4>0
          m<0

          解得m<-2
          又∵命題p∧q為真,則命題p與q均為真,
          ∴-4≤m<-2
          點評:本題的(1)考查了存在性問題,存在性問題是只要能找到即可,并不要求所有的都成立.(2)的關鍵是熟練掌握二次函數(shù)的圖象和性質及二次方程根與系數(shù)的關系.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習冊答案