日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知,函數(shù),(其中e是自然對數(shù)的底數(shù),為常數(shù)),

          (1)當(dāng)時,求的單調(diào)區(qū)間與極值;

          (2)是否存在實數(shù),使得的最小值為3. 若存在,求出的值,若不存在,說明理由。

           

          【答案】

          (1) 減區(qū)間為,增區(qū)間為,極小值為,無極大值(2)

          【解析】

          試題分析:(1)當(dāng)時,,………2分 (請見反面)

          時,,時,

          所以減區(qū)間為,增區(qū)間為,極小值為,無極大值。 ………5分

          (2)

          時,恒成立,所以遞減,

          所以,舍去                                   ………8分

          時,恒成立,所以遞減,

          所以,舍去                                   ………11分

          時,時,時,,

          所以遞減,遞增

          所以,成立          ………14分

          綜上所述:                        ………15分

          考點:極值,單調(diào)性,最值

          點評:解決該試題的關(guān)鍵是利用導(dǎo)數(shù)符號確定原函數(shù)的單調(diào)性,進而分析極值,得到最值,這是一般的解題思路,屬于中檔題。

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=·,其中=(sinωx+cosωx,cosωx), =(cosωx-sinωx,2sinωx)(ω>0).若f(x)相鄰兩對稱軸間的距離不小于.

          (1)求ω的取值范圍;

          (2)在△ABC中,a、b、c分別是角A、B、C的對邊,a=,b+c=3(b>c),當(dāng)ω最大時,f(A)=1,求邊b,c的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省等三校高三2月月考數(shù)學(xué)文卷 題型:解答題

          (本小題滿分14分)

          已知函數(shù),.(其中為自然對數(shù)的底數(shù)),

          (Ⅰ)設(shè)曲線處的切線與直線垂直,求的值;

          (Ⅱ)若對于任意實數(shù)≥0,恒成立,試確定實數(shù)的取值范圍;

          (Ⅲ)當(dāng)時,是否存在實數(shù),使曲線C:在點

          處的切線與軸垂直?若存在,求出的值;若不存在,請說明理由.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年天津市高三十校聯(lián)考理科數(shù)學(xué) 題型:解答題

          .(14分)已知函數(shù),,其中

          (Ⅰ)若是函數(shù)的極值點,求實數(shù)的值

          (Ⅱ)若對任意的為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆云南省高一期末考試數(shù)學(xué)試卷 題型:解答題

          已知函數(shù),(其中)的周期為π,且圖象上一個最低點為

           (1)求的解析式;

          (2)當(dāng)時,求的最值

           

          查看答案和解析>>

          同步練習(xí)冊答案