日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),

          (1)當(dāng)時,討論函數(shù)的單調(diào)性

          (2)當(dāng)時,,對任意,都有恒成立,求實數(shù)b的取值范圍.

          【答案】(1)單調(diào)遞增,在單調(diào)遞減;(2)

          【解析】

          1)先求得定義域及函數(shù)的導(dǎo)函數(shù),求得函數(shù)極值點.再由,可判斷導(dǎo)函數(shù)的符號,即可判斷函數(shù)的單調(diào)區(qū)間.

          2)將代入,再代入可得解析式.由不等式恒成立,分離參數(shù)后構(gòu)造函數(shù).求其導(dǎo)函數(shù)可得.再構(gòu)造函數(shù),求得.可判斷出有唯一的零點,即處取得最小值.進(jìn)而結(jié)合不等式即可求得b的取值范圍.

          1)定義域為

          由題知

          ,

          解得

          當(dāng),,

          當(dāng),﹔當(dāng),;

          函數(shù)單調(diào)遞增,在單調(diào)遞減

          2)將代入,再代入中可得

          恒成立可得恒成立,

          恒成立,

          設(shè),則,

          ,,

          當(dāng)時,,

          上單調(diào)遞增,且有,,

          函數(shù)有唯一的零點,且 ,

          當(dāng),,,單調(diào)遞減,

          當(dāng),,,單調(diào)遞增,

          在定義域內(nèi)的最小值

          ,

          ,,(*)

          ,,

          方程(*)等價為,,單調(diào)遞增,

          等價為,,

          ,,易知單調(diào)遞增,,

          的唯一零點,

          ,,

          的最小值,

          恒成立

          的范圍是

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知命題p在區(qū)間上存在單調(diào)遞減區(qū)間;命題q:函數(shù),且有三個實根.為真命題,則實數(shù)的取值范圍是:(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知fx=ax3+bx2+cxa≠0)在x=±1時取得極值,且f1=1

          1)試求常數(shù)a、bc的值;

          2)試判斷x=±1是函數(shù)的極小值還是極大值,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,D為正三棱柱ABCA1B1C1的棱AC的中點.

          1)證明:AB1∥平面BC1D

          2)若二面角CBC1D的大小為45°,求直線AB與平面BB1C1C夾角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】P為棱長是2的正方體的內(nèi)切球O球面上的動點,點M的中點,若滿足,則動點P的軌跡的長度為( )

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于兩點.

          (1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

          (2)若點的極坐標(biāo)為,,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列,其前項和為,滿足,,其中,,.

          ⑴若,,),求證:數(shù)列是等比數(shù)列;

          ⑵若數(shù)列是等比數(shù)列,求的值;

          ⑶若,且,求證:數(shù)列是等差數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知冪函數(shù)fx)=(3m22mx在(0,+∞)上單調(diào)遞增,gx)=x24x+t.

          1)求實數(shù)m的值;

          2)當(dāng)x[1,9]時,記fx),gx)的值域分別為集合AB,設(shè)命題pxA,命題qxB,若命題q是命題p的必要不充分條件,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正三棱柱的所有棱長都為的中點,邊上,.

          1)證明:平面平面

          2)若是側(cè)面內(nèi)的動點,且平面.

          ①在答題卡中作出點的軌跡,并說明軌跡的形狀(不需要說明理由);

          ②求二面角的余弦值的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案