日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)數(shù)列{an}滿足a1=a, an+1=can+1-c, N*,其中a,c為實數(shù),且c 0.

          (Ⅰ)求數(shù)列{an}的通項公式;

          (Ⅱ)設(shè)求數(shù)列{bn}的前n項和Sn;

          (Ⅲ)若0<an<1對任意N*成立,證明0<c1.

          本題主要考查數(shù)列的概念,數(shù)列通項公式的求法以及不等式的證明等;考查運算能力,綜合運用知識解決問題的能力.

          解 (1) 方法一:

                

                 當(dāng)時,是首項為,公比為的等比數(shù)列。

                ,即 。當(dāng)時,仍滿足上式。

                數(shù)列的通項公式為 。

          方法二

          由題設(shè)得:

          n≥2時,

          時,也滿足上式。

          數(shù)列的通項公式為

               (2)    由(1)得

                    

           

          (3)       證明:由(1)知

          ,則

            

          對任意成立,知。下證,用反證法

          方法一:假設(shè),由函數(shù)的函數(shù)圖象知,當(dāng)趨于無窮大時,趨于無窮大

          不能對恒成立,導(dǎo)致矛盾。。

          方法二:假設(shè),,

           恒成立    (*)

          為常數(shù), (*)式對不能恒成立,導(dǎo)致矛盾,


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)數(shù)列{an}滿足a1=1,且對任意的n∈N*,點Pn(n,an)都有
          .
          PnPn+1
          =(1,2)
          ,則數(shù)列{an}的通項公式為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•日照一模)若數(shù)列{bn}:對于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如:若cn=
          4n-1,當(dāng)n為奇數(shù)時
          4n+9,當(dāng)n為偶數(shù)時.
          則{cn}
          是公差為8的準(zhǔn)等差數(shù)列.
          (I)設(shè)數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.求證:{an}為準(zhǔn)等差數(shù)列,并求其通項公式:
          (Ⅱ)設(shè)(I)中的數(shù)列{an}的前n項和為Sn,試研究:是否存在實數(shù)a,使得數(shù)列Sn有連續(xù)的兩項都等于50.若存在,請求出a的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•日照一模)若數(shù)列{bn}:對于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如數(shù)列cn:若cn=
          4n-1,當(dāng)n為奇數(shù)時
          4n+9,當(dāng)n為偶數(shù)時
          ,則數(shù)列{cn}是公差為8的準(zhǔn)等差數(shù)列.設(shè)數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.
          (Ⅰ)求證:{an}為準(zhǔn)等差數(shù)列;
          (Ⅱ)求證:{an}的通項公式及前20項和S20

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)數(shù)列{an}滿足a1=1,a2+a4=6,且對任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx滿足f′(
          π
          2
          )=0
          cn=an+
          1
          2an
          ,則數(shù)列{cn}的前n項和Sn為( 。
          A、
          n2+n
          2
          -
          1
          2n
          B、
          n2+n+4
          2
          -
          1
          2n-1
          C、
          n2+n+2
          2
          -
          1
          2n
          D、
          n2+n+4
          2
          -
          1
          2n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)數(shù)列{an}滿足:a1=2,an+1=1-
          1
          an
          ,令An=a1a2an,則A2013
          =(  )

          查看答案和解析>>

          同步練習(xí)冊答案