日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知
          n
          =(2cosx,
          3
          sinx),
          m
          =(cosx,2cosx)
          ,設(shè)f(x)=
          n
          m
          +a

          (1)若x∈[0,
          π
          2
          ]
          且a=l時,求f(x)的最大值和最小值,以及取得最大值和最小值時x的值;
          (2)若x∈[0,π]且a=-1時,方程f(x)=b有兩個不相等的實數(shù)根x1、x2,求b的取值范圍及x1+x2的值.
          f(x)=
          n
          m
          +a=2cos2x+2
          3
          sinxcosx
          +a
          =cos2x+1+
          3
          sin2x+a=2sin(2x+
          π
          6
          )+a
          +1
          (1)a=1,f(x)=2sin(2x+
          π
          6
          )+2

          0≤x≤
          π
          2
          π
          6
          ≤2x+
          π
          6
          ≤ 
          6

          2x+
          π
          6
          =
          π
          2
          x=
          π
          6
          ,f(x)max=4;x=
          π
          2
          ,f(x)min=1
          . 

          (2)a=-1,f(x)=2sin(2x+
          π
          6
          )

          ∵0≤x≤π,∴
          π
          6
          ≤2x+
          π
          6
          13π
          6

          ∴-
          1
          2
          ≤sin(2x+
          π
          6
          )≤1
          ,∴-1≤f(x)≤2
          當f(x)=b有兩不等的根,結(jié)合函數(shù)的圖象可得1<b<2或-2<b<1
          b∈(-2,1)∪(1,2);x1+x2=
          π
          3
          ,
          3
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知
          n
          =(2cosx,
          3
          sinx),
          m
          =(cosx,2cosx)
          ,設(shè)f(x)=
          n
          m
          +a

          (1)若x∈[0,
          π
          2
          ]
          且a=l時,求f(x)的最大值和最小值,以及取得最大值和最小值時x的值;
          (2)若x∈[0,π]且a=-1時,方程f(x)=b有兩個不相等的實數(shù)根x1、x2,求b的取值范圍及x1+x2的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知
          m
          =(2cosx+2
          3
          sinx,1)
          n
          =(cosx,-y)
          ,滿足
          m
          n
          =0

          (1)將y表示為x的函數(shù)f(x),并求f(x)的最小正周期和單調(diào)遞增區(qū)間;
          (2)已知a,b,c分別為△ABC的三個內(nèi)角A,B,C對應的邊長,若f(
          A
          2
          )=3
          ,且a=2,求b+c的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知
          m
          =(2cosx,
          3
          ),
          n
          =(sinx,cos2x)
          ,記函數(shù)f(x)=
          m
          n

          (1)求f(x)的最小正周期和單調(diào)增區(qū)間;
          (2)當x∈[0,
          π
          4
          ]
          時,求f(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•長寧區(qū)一模)已知
          m
          =(2cosx+2
          3
          sinx,1),
          n
          =(cosx,-y)
          ,滿足
          m
          n
          =0

          (Ⅰ)將y表示為x的函數(shù)f(x),并求f(x)的最小正周期:
          (Ⅱ)已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對應邊長,若f(
          A
          2
          )=3
          ,且a=2,求b+c的取值范圍.

          查看答案和解析>>

          同步練習冊答案