日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 等差數(shù)列an不是常數(shù)列,a5=10,且a5,a7,a10是某一等比數(shù)列bn的第1,3,5項(xiàng).
          (1)求數(shù)列an的第20項(xiàng);
          (2)求數(shù)列bn的通項(xiàng)公式.
          【答案】分析:(1)先用a5和d表示出a7和a10,進(jìn)而利用等比中項(xiàng)的性質(zhì),建立等式求得d,進(jìn)而根據(jù)等差數(shù)列的通項(xiàng)公式求得an的第20項(xiàng);
          (2)由(1)知an為正項(xiàng)數(shù)列,進(jìn)而根據(jù)求得公比,進(jìn)而利用等比數(shù)列的通項(xiàng)公式求得答案.
          解答:解:(1)設(shè)數(shù)列an的公差為d,則a5=10,a7=10+2d,a10=10+5d
          因?yàn)榈缺葦?shù)列bn的第1、3、5項(xiàng)也成等比,所以a72=a5a10,
          即:(10+2d)2=10(10+5d),
          解得d=,d=0舍去)
          ∴a20=a5+15d=47.5.

          (2)由(1)知an為正項(xiàng)數(shù)列,
          所以
          ,

          點(diǎn)評:本題主要考查了等比數(shù)列和等差數(shù)列的性質(zhì).考查了對于等差數(shù)列和等比數(shù)列通項(xiàng)公式的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}中,如果對任意的n∈N*,都有
          an+2
          an+1
          -
          an+1
          an
          (λ為常數(shù)),則稱數(shù)列{an}為比等差數(shù)列,λ稱為比公差.則下列命題中真命題的序號是
          ①③
          ①③

          ①若數(shù)列{Fn}滿足F1=1,F(xiàn)2=1,F(xiàn)n=Fn-1+Fn-2(n≥3),則該數(shù)列不是比等差數(shù)列;
          ②若數(shù)列{an}滿足an=(n-1)•2n-1,則數(shù)列{an}是比等差數(shù)列,且比公差λ=2;
          ③“等差數(shù)列是常數(shù)列”是“等差數(shù)列成為比等差數(shù)列”的充分必要條件;
          ④數(shù)列{an}滿足:a1=
          3
          2
          ,且an=
          3nan-1
          2an-1+n-1
          (n≥2,n∈N),則此數(shù)列的通項(xiàng)為an=
          n•3n
          3n-1
          ,且{an}不是比等差數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}中,如果對任意的n∈N*,都有
          an+2
          an+1
          -
          an+1
          an
          (λ為常數(shù)),則稱數(shù)列{an}為比等差數(shù)列,λ稱為比公差.現(xiàn)給出以下命題,其中所有真命題的序號是
          ①④
          ①④

          ①若數(shù)列{Fn}滿足F1=1,F(xiàn)2=1,F(xiàn)n=Fn-1+Fn-2(n≥3),則該數(shù)列不是比等差數(shù)列;
          ②若數(shù)列{an}滿足an=(n-1)•2n-1,則數(shù)列{an}是比等差數(shù)列,且比公差λ=2;
          ③等差數(shù)列是常數(shù)列是成為比等差數(shù)列的充分必要條件;
          (文)④數(shù)列{an}滿足:an+1=an2+2an,a1=2,則此數(shù)列的通項(xiàng)為an=32n-1-1,且{an}不是比等差數(shù)列;
          (理)④數(shù)列{an}滿足:a1=
          3
          2
          ,且an=
          3nan-1
          2an-1+n-1
          (n≥2,n∈N*)
          ,則此數(shù)列的通項(xiàng)為an=
          n•3n
          3n-1
          ,且{an}不是比等差數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          A已知數(shù)列{an}是首項(xiàng)為a1=
          1
          4
          ,公比q=
          1
          4
          的等比數(shù)列,設(shè)bn+2=3log
          1
          4
          an  (n∈N*)
          ,數(shù)列{cn}滿足cn=an•bn
          (1)求證:{bn}是等差數(shù)列;
          (2)求數(shù)列{cn}的前n項(xiàng)和Sn
          (3)若cn
          1
          4
          m2+m-1
          對一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
          B已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
          2
          3
          an+n-4
          ,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
          (Ⅰ)對任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
          (Ⅱ)證明:當(dāng)λ≠-18時(shí),數(shù)列{bn}是等比數(shù)列;
          (Ⅲ)設(shè)0<a<b(a,b為實(shí)常數(shù)),Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          我們把數(shù)列{ank}叫做數(shù)列{an}的k方數(shù)列(其中an>0,k,n是正整數(shù)),S(k,n)表示k方數(shù)列的前n項(xiàng)的和.
          (1)比較S(1,2)•S(3,2)與[S(2,2)]2的大小;
          (2)若數(shù)列{an}的1方數(shù)列、2方數(shù)列都是等差數(shù)列,a1=a,求數(shù)列{an}的k方數(shù)列通項(xiàng)公式.
          (3)對于常數(shù)數(shù)列an=1,具有關(guān)于S(k,n)的恒等式如:S(1,n)=S(2,n),S(2,n)=S(3,n)等等,請你對數(shù)列{an}的k方數(shù)列進(jìn)行研究,寫出一個(gè)不是常數(shù)數(shù)列{an}的k方數(shù)列關(guān)于S(k,n)的恒等式,并給出證明過程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•房山區(qū)二模)在數(shù)列{an}中,如果對任意的n∈N*,都有
          an+2
          an+1
          -
          an+1
          an
          =λ(λ為常數(shù)),則稱數(shù)列{an}為比等差數(shù)列,λ稱為比公差.現(xiàn)給出以下命題:
          ①若數(shù)列{Fn}滿足F1=1,F(xiàn)2=1,F(xiàn)n=Fn-1+Fn-2(n≥3),則該數(shù)列不是比等差數(shù)列;
          ②若數(shù)列{an}滿足an=3•2n-1,則數(shù)列{an}是比等差數(shù)列,且比公差λ=0;
          ③等比數(shù)列一定是比等差數(shù)列,等差數(shù)列一定不是比等差數(shù)列;
          ④若{an}是等差數(shù)列,{bn}是等比數(shù)列,則數(shù)列{anbn}是比等差數(shù)列.
          其中所有真命題的序號是
          ①②
          ①②

          查看答案和解析>>

          同步練習(xí)冊答案