日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知0<t<1,m=|loga(1+t)|、n=|loga(1-t)|,則m與n的大小關(guān)系為________.

          m<n
          分析:對(duì)底數(shù)a分當(dāng)a>1時(shí)及0<a<1時(shí)兩類討論;利用對(duì)數(shù)函數(shù)的單調(diào)性判斷出絕對(duì)值內(nèi)部對(duì)數(shù)的符號(hào),去掉絕對(duì)值;利用作差判斷差的符號(hào),比較出m,n的大小.
          解答:∵0<t<1
          ∴1+t>1,0<1-t<1
          當(dāng)a>1時(shí),m=loga(1+t),n=-loga(1-t),
          ∴m-n=loga(1-t2)<0,
          ∴m<n
          當(dāng)0<a<1時(shí),m=-loga(1+t),n=loga(1-t),
          ∴n-m=loga(1-t2)>0
          ∴m<n
          總之m<n
          故答案為m<n
          點(diǎn)評(píng):本題考查利用對(duì)數(shù)函數(shù)的單調(diào)性判斷對(duì)數(shù)的大小、考查分類討論的數(shù)學(xué)思想方法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          12、已知0<t<1,m=|loga(1+t)|、n=|loga(1-t)|,則m與n的大小關(guān)系為
          m<n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)y=|x|+1,y=
          x2-2x+2+t
          ,y=
          1
          2
          (x+
          1-t
          x
          )
          (x>0)的最小值恰好是方程x3+ax2+bx+c=0的三個(gè)根,其中0<t<1.
          (Ⅰ)求證:a2=2b+3;
          (Ⅱ)設(shè)(x1,M),(x2,N)是函數(shù)f(x)=x3+ax2+bx+c的兩個(gè)極值點(diǎn).
          ①若|x1-x2|=
          2
          3
          ,求函數(shù)f(x)的解析式;
          ②求|M-N|的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2008•奉賢區(qū)模擬)我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為:A=
          .
          x\~(a1)(a2)(a3)…(an-1)(an)
          .如:A=
          .
          2\~(-1)(3)(-2)(1)
          ,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
          (1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進(jìn)制的簡(jiǎn)記形式.
          (2)若數(shù)列{an}滿足a1=2,ak+1=
          1
          1-ak
          ,k∈N*
          ,bn=
          .
          2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
          (n∈N*),是否存在實(shí)常數(shù)p和q,對(duì)于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說(shuō)明理由.
          (3)若常數(shù)t滿足t≠0且t>-1,dn=
          .
          t\~(
          C
          1
          n
          )(
          C
          2
          n
          )(
          C
          3
          n
          )…(
          C
          n-1
          n
          )(
          C
          n
          n
          )
          ,求
          lim
          n→∞
          dn
          dn+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省高考數(shù)學(xué)第三輪復(fù)習(xí)精編模擬試卷03(理科)(解析版) 題型:解答題

          已知0<t<1,m=|loga(1+t)|、n=|loga(1-t)|,則m與n的大小關(guān)系為   

          查看答案和解析>>

          同步練習(xí)冊(cè)答案