日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定點(diǎn)A (p為常數(shù),p>0),Bx軸負(fù)半軸上的一個(gè)動點(diǎn),動點(diǎn)M使得|AM|=|AB|,且線段BM的中點(diǎn)Gy軸上.

          (1)求動點(diǎn)M的軌跡C的方程;
          (2)設(shè)EF為曲線C的一條動弦(EF不垂直于x軸),其垂直平分線與x軸交于點(diǎn)T(4,0),當(dāng)p=2時(shí),求|EF|的最大值.

          (1)y2=2px(p>0,x≠0)(2)6.

          解析

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓C的焦點(diǎn)分別為,長軸長為6,設(shè)直線交橢圓C于A、B兩點(diǎn),求線段AB的中點(diǎn)坐標(biāo)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓C的中心為平面直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
          (1)求橢圓C的方程;
          (2)若P為橢圓C上的動點(diǎn),M為過P且垂直于x軸的直線上的一點(diǎn),λ,求點(diǎn)M的軌跡方程,并說明軌跡是什么曲線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知點(diǎn)、為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且.圓的方程是
          (1)求雙曲線的方程;
          (2)過雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;
          (3)過圓上任意一點(diǎn)作圓的切線交雙曲線兩點(diǎn),中點(diǎn)為,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知直線過點(diǎn)且與拋物線交于A、B兩點(diǎn),以弦AB為直徑的圓恒過坐標(biāo)原點(diǎn)O.

          (1)求拋物線的標(biāo)準(zhǔn)方程;
          (2)設(shè)是直線上任意一點(diǎn),求證:直線QA、QM、QB的斜率依次成等差數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知F1,F2分別為橢圓C1=1(a>b>0)的上下焦點(diǎn),其中F1是拋物線C2x2=4y的焦點(diǎn),點(diǎn)MC1C2在第二象限的交點(diǎn),且|MF1|=.

          (1)試求橢圓C1的方程;
          (2)與圓x2+(y+1)2=1相切的直線lyk(xt)(t≠0)交橢圓于AB兩點(diǎn),若橢圓上一點(diǎn)P滿足,求實(shí)數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知平面五邊形關(guān)于直線對稱(如圖(1)),,,將此圖形沿折疊成直二面角,連接得到幾何體(如圖(2))

          (1)證明:平面;
          (2)求平面與平面的所成角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,已知點(diǎn),是動點(diǎn),且的三邊所在直線的斜率滿足
          (1)求點(diǎn)的軌跡的方程;
          (2)若是軌跡上異于點(diǎn)的一個(gè)點(diǎn),且,直線交于點(diǎn),問:是否存在點(diǎn),使得的面積滿足?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,已知點(diǎn),圓是以為圓心,半徑為的圓,點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑所在的直線交于點(diǎn).
          (Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動時(shí),求點(diǎn)的軌跡方程;
          (Ⅱ)已知,是曲線上的兩點(diǎn),若曲線上存在點(diǎn),滿足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案