已知函數(shù)f(x)=x|x-a|+2x-3
(1)當(dāng)a=4,2≤x≤5時,求函數(shù)f(x)的最大值和最小值;
(2)當(dāng)xÎ[1,2]時,f(x)≤2x-2恒成立,求實(shí)數(shù)a的取值范圍.
(1)當(dāng)a=4時,f(x)=x|x-4|+2x-3;
①當(dāng)2≤x<4時,f(x)=x(4-x)+2x-3=-x2+6x-3,
當(dāng)x=2時,f(x)min=5;當(dāng)x=3時,f(x)max=6 2分
②當(dāng)4≤x≤5時,f(x)=x(x-4)+2x-3=x2-2x-3=(x-1)2-4,
當(dāng)x=4時,f(x)min=5;當(dāng)x=5時,f(x)max=12 4分
綜上可知,函數(shù)f(x)的最大值為12,最小值為5. 6分
(2)若x≥a,原不等式化為f(x)= x2-ax≤1,即a≥x-
在xÎ[1,2]上恒成立,
∴a≥(x-)max,即a≥
. 8分
若x<a,原不等式化為f(x)=-x2+ax≤1,即a≤x+在xÎ[1,2]上恒成立,
∴a≤(x-)min,即a≤2. 10分
綜上可知,a的取值范圍為≤a≤2. 12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022
已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com