日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2005•金山區(qū)一模)某企業(yè)準備在2006年對員工增加獎金200元,其中有120元是基本獎金.預(yù)計在今后的若干年內(nèi),該企業(yè)每年新增加的獎金平均比上一年增長8%.另外,每年新增加的獎金中,基本獎金均比上一年增加30元.那么,到哪一年底,
          (1)該企業(yè)歷年所增加的獎金中基本獎金累計(以2006年為累計的第一年)將首次不少于750元?
          (2)當(dāng)年增加的基本獎金占該年增加獎金的比例首次大于85%?
          分析:(1)設(shè)基本獎金形成數(shù)列{an},由題意可知{an}是等差數(shù)列,然后求出該數(shù)列的前n項和,最后根據(jù)歷年所增加的獎金中基本獎金累計(以2006年為累計的第一年)將首次不少于750元建立關(guān)系式,解之即可求出所求;
          (2)設(shè)新增加的獎金形成數(shù)列{bn},由題意可知{bn}是等比數(shù)列,然后根據(jù)題意可知an>0.85 bn,解之即可求出所求.
          解答:解:(1)設(shè)基本獎金形成數(shù)列{an},由題意可知{an}是等差數(shù)列,
          (或a1=120,,d=30,或an=120+30 (n-1))(1分)
          Sn=a1n+
          1
          2
          n(n-1)d(2分)
          則Sn=120n+15n(n-1)=15n2+105n=15(n2+7n)(4分)
          令15n2+105n≥750,即n2+7n-50≥0,而n是正整數(shù),∴n≥5.(5分)
          到2010年底該企業(yè)歷年所增加的工資中基本工資累計將首次不少于750元.(6分)
          (2)設(shè)新增加的獎金形成數(shù)列{bn},由題意可知{bn}是等比數(shù)列,(或b1=200,q=1.08,或bn=bn-1q) (7分)
          則bn=200•(1.08)n-1(9分)
          由題意可知an>0.85 bn,有120+30 (n-1)>200•(1.08)n-1•0.85. (11分)
          由計箅器解得滿足上述不等式的最小正整數(shù)n=5,(13分)
          到2010年底,當(dāng)年增加的基本獎金占該年增加獎金的比例首次大于85% (14分)
          點評:本題主要考查了等差數(shù)列和等比數(shù)列的綜合運用,同時考查了數(shù)列的求和和一元二次不等式的解法,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2005•金山區(qū)一模)對于集合N={1,2,3,…,n}的每一個非空子集,定義一個“交替和”如下:按照遞減的次序重新排列該子集,然后從最大數(shù)開始交替地減、加后繼的數(shù).例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和為5.當(dāng)集合N中的n=2時,集合N={1,2}的所有非空子集為{1},{2},{1,2},則它的“交替和”的總和S2=1+2+(2-1)=4,請你嘗試對n=3、n=4的情況,計算它的“交替和”的總和S3、S4,并根據(jù)其結(jié)果猜測集合N={1,2,3,…,n}的每一個非空子集的“交替和”的總和Sn=
          n•2n-1
          n•2n-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2005•金山區(qū)一模)已知集合A={x|y=lg(x-3)},B={x|y=
          5-x
          },則A∩B=
          {x|3<x≤5}
          {x|3<x≤5}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2005•金山區(qū)一模)定義在R上的函數(shù)f(x)是奇函數(shù),則f(0)的值為
          0
          0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2005•金山區(qū)一模)設(shè)函數(shù)f(x)=lgx,則它的反函數(shù)f-1(x)=
          10x,x∈R
          10x,x∈R

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2005•金山區(qū)一模)若復(fù)數(shù)z1=3-i,z2=7+2i,(i為虛數(shù)單位),則|z2-z1|=
          5
          5

          查看答案和解析>>

          同步練習(xí)冊答案