日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓E的焦點在x軸上,長軸長為4,離心率為
          (Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
          (Ⅱ)已知點A(0,1)和直線l:y=x+m,線段AB是橢圓E的一條弦且直線l垂直平分弦AB,求實數(shù)m的值.
          【答案】分析:(Ⅰ)根據(jù)已知可求出橢圓中的a,b的值,再根據(jù)橢圓的焦點在x軸上,就可得到橢圓方程.
          (Ⅱ)根據(jù)直線AB與直線l:y=x+m垂直,可得直線AB的斜率,結(jié)合A點坐標(biāo)就可求出直線AB的方程,代入橢圓方程,化簡,利用韋達定理求出AB的中點坐標(biāo),代入直線l的方程,就可求出m的值.
          解答:解:(Ⅰ)∵橢圓E的長軸長為4,∴a=2,離心率為
          ,c=,∴b=1
          ∵橢圓E的焦點在x軸上,
          ∴橢圓E的標(biāo)準(zhǔn)方程為
          (Ⅱ)由條件可得直線AB的方程為y=-x+1.于是,有
          設(shè)弦AB的中點為M,則由中點坐標(biāo)公式得,由此及點M在直線l得
          點評:本題主要考查了橢圓的性質(zhì),標(biāo)準(zhǔn)方程,以及直線與橢圓相交問題中韋達定理的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓E的焦點在x軸上,離心率為
          1
          2
          ,對稱軸為坐標(biāo)軸,且經(jīng)過點(1,
          3
          2
          ).
          (Ⅰ)求橢圓E的方程;
          (Ⅱ)直線y=kx-2與橢圓E相交于A,B兩點,在OA上存在一點M,OB上存在一點N,使得
          MA
          =
          1
          2
          AB
          ,若原點O在以MN為直徑的圓上,求直線斜率k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•深圳一模)已知橢圓E的焦點在x軸上,長軸長為4,離心率為
          3
          2

          (Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
          (Ⅱ)已知點A(0,1)和直線l:y=x+m,線段AB是橢圓E的一條弦且直線l垂直平分弦AB,求實數(shù)m的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•貴州模擬)已知橢圓E的焦點在x軸上,離心率為
          1
          2
          ,對稱軸為坐標(biāo)軸,且經(jīng)過點(1,
          3
          2
          )

          (I)求橢圓E的方程;
          (II)直線y=kx-2與橢圓E相交于A、B兩點,O為原點,在OA、OB上分別存在異于O點的點M、N,使得O在以MN為直徑的圓外,求直線斜率k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知橢圓E的焦點在x軸上,長軸長為4,離心率為
          3
          2

          (Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
          (Ⅱ)已知點A(0,1)和直線l:y=x+m,線段AB是橢圓E的一條弦且直線l垂直平分弦AB,求實數(shù)m的值.

          查看答案和解析>>

          同步練習(xí)冊答案