日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=1,E,F(xiàn)分別是AB、PD的中點.
          (1)求證:AF⊥平面PDC;
          (2)求三棱錐B-PEC的體積;
          (3)求證:AF∥平面PEC.

          【答案】分析:(1)利用線面垂直的性質(zhì)定理可得AB⊥AF.,再利用線面垂直的判定定理即可證明;
          (2)利用三棱錐的體積計算公式VB-PEC=VP-BEC=即可得出;
          (3)取PC得中點M,連接MF、ME.利用三角形的中位線定理及矩形的性質(zhì)可得,于是四邊形AEMF是平行四邊形,可得AF∥EM,再利用線面平行的判定定理可得AF∥平面PEC.
          解答:(1)證明:∵PA⊥平面ABCD,∴PA⊥CD,
          由底面ABCD是矩形,∴CD⊥DA,又PA∩AD=A,∴CD⊥平面PAD,
          ∴CD⊥AF.
          ∵PA=AD=1,F(xiàn)是PD的中點,
          ∴AF⊥PD,
          又PD∩DC=D,∴AF⊥平面PDC.
          (2)解:=,
          ∵PA⊥平面ABCD,
          VB-PEC=VP-BEC==
          (3)取PC得中點M,連接MF、ME.
          ,,E是AB的中點,∴
          ∴四邊形AEMF是平行四邊形,
          ∴AF∥EM.
          又AF?平面PEC,EM?平面PEC,
          ∴AF∥平面PEC.
          點評:本題綜合考查了線面垂直的判定與性質(zhì)定理、線面與面面平行的判定與性質(zhì)定理、三角形的中位線定理、平行四邊形的性質(zhì)、三棱錐的體積等基礎(chǔ)知識與基本技能,考查了空間想象能力、推理能力和計算能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分別是AB、PD的中點.
          (Ⅰ)求證:AF∥平面PEC;
          (Ⅱ)求PC與平面ABCD所成角的正弦值;
          (Ⅲ)求二面角P-EC-D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•即墨市模擬)已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2a,AB=a,PA⊥平米ABCD,F(xiàn)是線段BC的中點.H為PD中點.
          (1)證明:FH∥面PAB;
          (2)證明:PF⊥FD;
          (3)若PB與平米ABCD所成的角為45°,求二面角A-PD-F的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•即墨市模擬)已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2a,AB=a,PA⊥平米ABCD,F(xiàn)是線段BC的中點.H為PD中點.
          (1)證明:FH∥面PAB;
          (2)證明:PF⊥FD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知在四棱錐P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,AB=1,PA•AC=1,∠ABC=θ(0<θ<
          π2
          ),則四棱錐P-ABCD的體積V的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•棗莊二模)已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.
          (1)證明:DF⊥平面PAF;
          (2)在線段AP上取點G使AG=
          14
          AP,求證:EG∥平面PFD.

          查看答案和解析>>

          同步練習(xí)冊答案