數(shù)列的前
項和為
,
,
.
求數(shù)列的通項
;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
公差不為零的等差數(shù)列{}中,
,又
成等比數(shù)列.
(Ⅰ)求數(shù)列{}的通項公式;
(Ⅱ)設(shè),求數(shù)列{
}的前n項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的公差不為零,a1=25,且,
,
成等比數(shù)列.
(Ⅰ)求的通項公式;
(Ⅱ)求+a4+a7+…+a3n-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項
,公差
,且第2項、第5項、第14項分別是等比數(shù)列
的第2項、第3項、第4項.
(1)求數(shù)列、
的通項公式;
(2)設(shè)數(shù)列對任意的
,均有
成立,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列和公比為
的等比數(shù)列
滿足:
,
,
.
(1)求數(shù)列,
的通項公式;
(2)求數(shù)列的前
項和為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列是等比數(shù)列,
,公比
是
的展開式中的第二項(按x的降冪排列).
(1)用表示通項
與前n項和
;
(2)若,用
表示
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是各項都為正數(shù)的等比數(shù)列,
是等差數(shù)列,且
,
(1)求,
的通項公式;
(2)記的前
項和為
,求證:
;
(3)若均為正整數(shù),且
記所有可能乘積
的和
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項和為
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若,求數(shù)列{Cn}的前n項和Tn
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com