【題目】如圖,在正三棱柱中底面邊長、側(cè)棱長都是4,
別是
的中點,則以下四個結(jié)論中正確的是( )
①與
所成的角的余弦值為
;②
平行于平面
;③三棱錐
的體積為
;④
垂直于
.
A.①②③B.②③④C.①③④D.①②④
科目:高中數(shù)學(xué) 來源: 題型:
【題目】疫情爆發(fā)以來,相關(guān)疫苗企業(yè)發(fā)揮專業(yè)優(yōu)勢與技術(shù)優(yōu)勢爭分奪秒開展疫苗研發(fā).為測試疫苗的有效性(若疫苗有效的概率小于90%,則認(rèn)為測試沒有通過),選定2000個樣本分成三組,測試結(jié)果如“下表:
|
|
| |
疫苗有效 | 673 | ||
疫苗無效 | 77 | 90 |
已知在全體樣本中隨機抽取1個,抽到組疫苗有效的概率是0.33.
(1)求,
的值;
(2)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個測試結(jié)果,求組應(yīng)抽取多少個?
(3)已知,
,求疫苗能通過測試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中提到了一種名為“芻甍[chúméng]”的五面體(如圖),四邊形為矩形,棱
.若此幾何體中,
,
和
都是邊長為
的等邊三角形,則此幾何體的體積為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)[選修4-5:不等式選講]
已知函數(shù)=|x-a|+
(a≠0)
(1)若不等式-
≤1恒成立,求實數(shù)m的最大值;
(2)當(dāng)a<時,函數(shù)g(x)=
+|2x-1|有零點,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線與圓
在第一象限交點為
,曲線
.
(1)若,求b;
(2)若,
與x軸交點是
,P
是曲線
上一點,且在第一象限,并滿足
,求∠
;
(3)過點且斜率為
的直線
交曲線
于M、N兩點,用b的代數(shù)式表示
,并求出
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線
的參數(shù)方程為
為參數(shù),曲線
上的點
的極坐標(biāo)分別為
.
(1)過O作線段的垂線,垂足為H,求點H的軌跡
的直角坐標(biāo)方程;
(2)求兩點間的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下命題:
(1)已知回歸直線方程為,樣本點的中心為
,則
;
(2)已知,
與
的夾角為鈍角,則
是
的充要條件;
(3)函數(shù)圖象關(guān)于點
對稱且在
上單調(diào)遞增;
(4)命題“存在”的否定是“對于任意
”;
(5)設(shè)函數(shù),若函數(shù)
恰有三個零點,則實數(shù)m的取值范圍為
.
其中不正確的命題序號為______________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線
過原點且傾斜角為
.以坐標(biāo)原點
為極點,
軸正半軸為極軸建立坐標(biāo)系,曲線
的極坐標(biāo)方程為
.在平面直角坐標(biāo)系
中,曲線
與曲線
關(guān)于直線
對稱.
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)若直線過原點且傾斜角為
,設(shè)直線
與曲線
相交于
,
兩點,直線
與曲線
相交于
,
兩點,當(dāng)
變化時,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點到定點
的距離比
到定直線
的距離小1.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)過點任意作互相垂直的兩條直線
,分別交曲線
于點
和
.設(shè)線段
,
的中點分別為
,求證:直線
恒過一個定點;
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com