日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知動點到定點的距離比到定直線的距離小1.

          (Ⅰ)求點的軌跡的方程;

          (Ⅱ)過點任意作互相垂直的兩條直線,分別交曲線于點.設線段, 的中點分別為,求證:直線恒過一個定點;

          (Ⅲ)在(Ⅱ)的條件下,求面積的最小值.

          【答案】(1) (2)過定點,(3)4

          【解析】試題分析:(Ⅰ)先借助拋物線定義確定曲線的形狀是拋物線,再確定參數(shù),進而求出;(Ⅱ)先依據(jù)(Ⅰ)的結(jié)論分別建立的方程,再分別與拋物線聯(lián)立方程組,求出弦中點為的坐標,最后借助斜率的變化確定直線經(jīng)過定點;(Ⅲ)在(Ⅱ)前提條件下,先求出,然后建立面積關于變量的函數(shù),再運用基本不等式求其最小值:

          解:(Ⅰ)由題意可知:動點到定點的距離等于到定直線的距離.根據(jù)拋物線的定義可知,點的軌跡是拋物線.

          ,∴拋物線方程為:

          (Ⅱ)設兩點坐標分別為,則點的坐標為.

          由題意可設直線的方程為.

          ,得.

          .

          因為直線與曲線兩點,所以.

          所以點的坐標為.

          由題知,直線的斜率為,同理可得點的坐標為.

          時,有,此時直線的斜率.

          所以,直線的方程為,整理得.

          于是,直線恒過定點;

          時,直線的方程為,也過點.

          綜上所述,直線恒過定點.

          (Ⅲ)可求得.所以面積.

          當且僅當時,“ ”成立,所以面積的最小值為4.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】四棱臺被過點的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形是邊長為2的菱形,,平面.

          (Ⅰ)求證:平面平面;

          (Ⅱ)若與底面所成角的正切值為2,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),.

          (1)討論函數(shù)的單調(diào)性;

          (2)若函數(shù)上的最大值為1,求實數(shù)的取值集合.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知是拋物線上的兩個點,點的坐標為,直線的斜率為.設拋物線的焦點在直線的下方.

          )求k的取值范圍;

          )設CW上一點,且,過兩點分別作W的切線,記兩切線的交點為. 判斷四邊形是否為梯形,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知動點到定點的距離比到定直線的距離小1.

          (Ⅰ)求點的軌跡的方程;

          (Ⅱ)過點任意作互相垂直的兩條直線,分別交曲線于點.設線段 的中點分別為,求證:直線恒過一個定點;

          (Ⅲ)在(Ⅱ)的條件下,求面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】選修4-4:坐標系與參數(shù)方程

          在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點.

          (1)寫出曲線的直角坐標方程和直線的普通方程;

          (2),的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,橢圓的左、右焦點分別為離心率為,兩準線之間的距離為8,在橢圓上,且位于第一象限,過點作直線的垂線,過點作直線的垂線

          (1)求橢圓的標準方程;

          (2)若直線的交點在橢圓,求點的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知圓與直線相切.

          (1)若直線與圓交于兩點,求;

          (2)設圓軸的負半軸的交點為,過點作兩條斜率分別為的直線交圓兩點,且,試證明直線恒過一定點,并求出該定點的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=axlnx﹣x+l (aR),且f(x)0.

          (I)求a;

          II)求證:當,nN*時,

          查看答案和解析>>

          同步練習冊答案