【題目】2017年冬,北京霧霾天數(shù)明顯減少,據(jù)環(huán)保局統(tǒng)計(jì)三個(gè)月的空氣質(zhì)量,達(dá)到優(yōu)良的天數(shù)超過天,重度污染的天數(shù)僅有
天,主要原因是政府對治理霧霾采取有效措施.如:(1)減少機(jī)動(dòng)車尾氣排放(2)實(shí)施煤改電或煤改氣工程(3)關(guān)停了大量的排污企業(yè)(4)部分企業(yè)季節(jié)性停產(chǎn).為了解農(nóng)村地區(qū)實(shí)施煤改氣工程后天然氣的使用從某鄉(xiāng)鎮(zhèn)隨機(jī)抽取
戶,進(jìn)行月均用氣量調(diào)查,得到的用氣量數(shù)據(jù)均在區(qū)間
內(nèi),表如下
分組 | 頻數(shù) | 頻率 |
14 | 0.14 | |
55 | 0.55 | |
4 | 0.04 | |
2 | 0.02 | |
合計(jì) | 100 | 1 |
(1)求和
值,若同組內(nèi)的每個(gè)數(shù)據(jù)用該組區(qū)間中點(diǎn)值代替,估計(jì)該鄉(xiāng)鎮(zhèn)每戶平均用氣量;
(2)從樣本調(diào)查的用氣量和
的用戶組中任選2戶,進(jìn)行燃?xì)馐褂脻M意度調(diào)查,求2戶用氣量處于不同區(qū)間的概率.
【答案】(1),平均數(shù)為2.05;(2)
【解析】
(1)根據(jù)即得
的值,再利用頻率公式求
的值,再利用平均數(shù)公式求解即可;
(2)設(shè),
組內(nèi)數(shù)據(jù)為
,
,
,
,
組內(nèi)數(shù)據(jù)為:
,
,從月均用氣量高于3千立方米的中隨機(jī)抽取2戶,利用列舉法能求出這2戶用氣量處于不同區(qū)間的概率.
(1)由題得.
.
同組內(nèi)的每個(gè)數(shù)據(jù)用該組區(qū)間中點(diǎn)值代替,估計(jì)該鄉(xiāng)鎮(zhèn)每戶平均用氣量為
.
(2)設(shè),
組內(nèi)數(shù)據(jù)為
,
,
,
,
組內(nèi)數(shù)據(jù)為:
,
,
從月均用氣量高于3千立方米的中隨機(jī)抽取2戶的基本事件空間為
,
,
,
,
,
,
,
,
,
,
,
,
,共有15種情況,
設(shè)隨機(jī)抽取2戶不在同一組為事件,
則中共有:
,
,
,
,
,
,
,
共有8種情況這2戶用氣量處于不同區(qū)間的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求
在區(qū)間
的最大值;
(2)若函數(shù)有兩個(gè)極值點(diǎn)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動(dòng)制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對其身高和臂展進(jìn)行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點(diǎn)圖,并求得其回歸方程為,以下結(jié)論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,
C. 可估計(jì)身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,直線
的極坐標(biāo)方程為
.
(1)求曲線與直線
的直角坐標(biāo)方程.
(2)直線與
軸的交點(diǎn)為
,與曲線
的交點(diǎn)為
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓E:(a,b>0)過M(2,
) ,N(
,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線
的焦點(diǎn),點(diǎn)
在
軸上,
為坐標(biāo)原點(diǎn),且滿足
,經(jīng)過點(diǎn)
且垂直于
軸的直線與拋物線
交于
、
兩點(diǎn),且
.
(1)求拋物線的方程;
(2)直線與拋物線
交于
、
兩點(diǎn),若
,求點(diǎn)
到直線
的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某飼料廠原有陳糧10噸,又購進(jìn)新糧x噸,現(xiàn)將糧食總庫存量的一半精加工為飼料.若被精加工的新糧最多可用噸,被精加工的陳糧最多可用y2噸,記
,則函數(shù)
的圖象為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點(diǎn)生活或配合其他民俗活動(dòng)的民間藝術(shù);蘊(yùn)含了極致的數(shù)學(xué)美和豐富的傳統(tǒng)文化信息,現(xiàn)有一幅剪紙的設(shè)計(jì)圖,其中的4個(gè)小圓均過正方形的中心,且內(nèi)切于正方形的兩鄰邊.若在正方形內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自黑色部分的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)
(1)是
的極小值點(diǎn);
(2)函數(shù)有且只有1個(gè)零點(diǎn);
(3)恒成立;
(4)設(shè)函數(shù),若存在區(qū)間
,使
在
上的值域是
,則
.
上述說法正確的序號為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com