日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在多面體中,四邊形是平行四邊形,平面平面為正三角形,,,.

          1)證明:平面平面;

          2)求平面與平面所成銳二面角的余弦值.

          【答案】1)證明見解析;(2.

          【解析】

          1)分別取的中點(diǎn)連結(jié),,,先證,再證平面,然后可得平面,又平面,可證平面平面;

          (2)先建立空間直角坐標(biāo)系,然后分別求出平面的法向量為和平面的法向量為,然后代入公式計(jì)算即可.

          1)如圖,分別取,的中點(diǎn)連結(jié),,

          可得,,

          ∵四邊形是平行四邊形,∴,,

          平面,平面,

          平面,

          平面

          且平面平面,∴

          ,∴,

          ∴四邊形為平行四邊形,∴,

          為正三角形,

          ,

          中,,,

          滿足,∴,即

          ,又,

          平面,∴平面,

          平面,∴,

          ,∴平面

          平面,

          平面,∴平面平面;

          2)由(1)得建立如圖所示的空間直角坐標(biāo)系,

          由題意得,,, ,

          設(shè)平面的法向量為,

          ,令,則,

          ,

          ,

          設(shè)平面的法向量為,

          ,解得,令,則,

          ,

          ∴平面與平面所成銳二面角的余弦值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),且.

          (Ⅰ)求的值;

          (Ⅱ)在函數(shù)的圖象上任意取定兩點(diǎn),,記直線的斜率為,求證:存在唯一,使得成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】求直線關(guān)于對稱的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】正態(tài)分布有極其廣泛的實(shí)際背景,生產(chǎn)與科學(xué)實(shí)驗(yàn)中很多隨機(jī)變量的概率分布都可以近似地用正態(tài)分布來描述.例如,同一種生物體的身長、體重等指標(biāo).隨著“綠水青山就是金山銀山”的觀念不斷的深入人心,環(huán)保工作快速推進(jìn),很多地方的環(huán)境出現(xiàn)了可喜的變化.為了調(diào)查某水庫的環(huán)境保護(hù)情況,在水庫中隨機(jī)捕撈了100條魚稱重.經(jīng)整理分析后發(fā)現(xiàn),魚的重量x(單位:kg)近似服從正態(tài)分布,如圖所示,已知.

          (Ⅰ)若從水庫中隨機(jī)捕撈一條魚,求魚的重量在內(nèi)的概率;

          (Ⅱ)(ⅰ)從捕撈的100條魚中隨機(jī)挑出6條魚測量體重,6條魚的重量情況如表.

          重量范圍(單位:kg

          條數(shù)

          1

          3

          2

          為了進(jìn)一步了解魚的生理指標(biāo)情況,從6條魚中隨機(jī)選出3條,記隨機(jī)選出的3條魚中體重在內(nèi)的條數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;

          (ⅱ)若將選剩下的94條魚稱重做標(biāo)記后立即放生.兩周后又隨機(jī)捕撈1000條魚,發(fā)現(xiàn)其中帶有標(biāo)記的有2.為了調(diào)整生態(tài)結(jié)構(gòu),促進(jìn)種群的優(yōu)化,預(yù)備捕撈體重在內(nèi)的魚的總數(shù)的40%進(jìn)行出售,試估算水庫中魚的條數(shù)以及應(yīng)捕撈體重在內(nèi)的魚的條數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的幾何體中,四邊形是菱形,,的中點(diǎn),平面.

          (1)求證:平面平面;

          (2)若,,且,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)點(diǎn)為平面直角坐標(biāo)系中的一個(gè)動(dòng)點(diǎn)(其中為坐標(biāo)系原點(diǎn)),點(diǎn)到定點(diǎn)的距離比到直線的距離大1,動(dòng)點(diǎn)的軌跡方程為.

          1)求曲線的方程;

          2)若過點(diǎn)的直線與曲線相交于、兩點(diǎn).

          ①若,求直線的直線方程;

          ②分別過點(diǎn),作曲線的切線且交于點(diǎn),是否存在以為圓心,以為半徑的圓與經(jīng)過點(diǎn)且垂直于直線的直線相交于、兩點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】四棱錐中,PC⊥面ABCD,直角梯形ABCD中,∠B=C=90°AB=4,CD=1,PC=2,點(diǎn)MPB上且PB=4PM,PB與平面PCD所成角為60°.

          1)求證:

          2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C:+=1(a>b>0)的離心率為,直線l:x+2y=4與橢圓有且只有一個(gè)交點(diǎn)T.

          (I)求橢圓C的方程和點(diǎn)T的坐標(biāo);

          )O為坐標(biāo)原點(diǎn),與OT平行的直線l′與橢圓C交于不同的兩點(diǎn)A,B,直線l′與直線l交于點(diǎn)P,試判斷是否為定值,若是請求出定值,若不是請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,已知四邊形是菱形,平面平面,.

          1)求證:平面平面.

          2)若,求二面角的余弦值.

          查看答案和解析>>