日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,以為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為),上一點,以為邊作等邊三角形,且、、三點按逆時針方向排列.

          (Ⅰ)當(dāng)點上運動時,求點運動軌跡的直角坐標(biāo)方程;

          (Ⅱ)若曲線 ,經(jīng)過伸縮變換得到曲線,試判斷點的軌跡與曲線是否有交點,如果有,請求出交點的直角坐標(biāo),沒有則說明理由.

          【答案】(1)(2)

          【解析】試題分析:考慮到 點的極坐標(biāo)可以表示為點代入直線的極坐標(biāo)方程中得到關(guān)于的方程即為點的極坐標(biāo)方程,再轉(zhuǎn)化為點的直角坐標(biāo)方程.2)將曲線的普通方程與直線普通方程聯(lián)立 故必有兩個交點.

          試題解析:(Ⅰ)設(shè)點的坐標(biāo)為,

          則由題意可得點的坐標(biāo)為,

          再由點的橫坐標(biāo)等于, ,

          可得,

          可得,

          故當(dāng)點上運動時點的直角坐標(biāo)方程為

          (Ⅱ)曲線

          ,即,代入,即,

          聯(lián)立點的軌跡方程,消去,

          有交點,坐標(biāo)分別為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC. (Ⅰ)求A的大;
          (Ⅱ)求sinB+sinC的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市出租車的計價標(biāo)準(zhǔn)是:4km以內(nèi)(含4km)10元,超過4km且不超過18km的部分1.2元/km,超過18km的部分1.8元/km,不計等待時間的費用.
          (1)如果某人乘車行駛了10km,他要付多少車費?
          (2)試建立車費y(元)與行車?yán)锍蘹(km)的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓)的左右焦點分別為、,離心率.過的直線交橢圓于、兩點,三角形的周長為.

          (1)求橢圓的方程;

          (2)若弦,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,以為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為),上一點,以為邊作等邊三角形,且、三點按逆時針方向排列.

          (Ⅰ)當(dāng)點上運動時,求點運動軌跡的直角坐標(biāo)方程;

          (Ⅱ)若曲線 ,經(jīng)過伸縮變換得到曲線,試判斷點的軌跡與曲線是否有交點,如果有,請求出交點的直角坐標(biāo),沒有則說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓 ),設(shè)為圓軸負(fù)半軸的交點,過點作圓的弦,并使弦的中點恰好落在軸上.

          (Ⅰ)求點的軌跡的方程;

          (Ⅱ)延長交曲線于點,曲線在點處的切線與直線交于點,試判斷以點為圓心,線段長為半徑的圓與直線的位置關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知⊙C經(jīng)過點、兩點,且圓心C在直線上.

          (1)求⊙C的方程;

          (2)若直線與⊙C總有公共點,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓),四點 , , 中恰有三點在橢圓上.

          1的方程;

          2設(shè)直線不經(jīng)過點且與相交于兩點,若直線與直線的斜率之和為證明: 過定點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若任意,不等式恒成立,求實數(shù)的取值范圍;

          (2)求證:對任意, ,都有成立;

          (3)對于給定的正數(shù),有一個最大的正數(shù),使得整個區(qū)間上,不等式恒成立,求出的解析式.

          查看答案和解析>>

          同步練習(xí)冊答案