如圖,已知直線l:y=2x-4交拋物線y2=4x于A,B兩點,試在拋物線AOB這段曲線上求一點P,使△PAB的面積最大,并求出這個最大面積.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分) 設(shè)橢圓E中心在原點,焦點在x軸上,短軸長為4,點M(2,)在橢圓上,。
(1)求橢圓E的方程;
(2)設(shè)動直線L交橢圓E于A、B兩點,且,求△OAB的面積的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知雙曲線與橢圓有相同焦點,且經(jīng)過點
,
求該雙曲線方程,并求出其離心率、漸近線方程,準(zhǔn)線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,橢圓短軸的一個端點與兩個焦
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓
相交于
、
兩點. ①若線段
中點的
橫坐標(biāo)為,求斜率
的值;②若點
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
本小題滿分10分)
求適合下列條件的拋物線的標(biāo)準(zhǔn)方程:
(1)過點(-3,2);
(2)焦點在直線x-2y-4=0上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)
給定拋物線,
是拋物線
的焦點,過點
的直線
與
相交于
、
兩點,
為坐標(biāo)原點.
(Ⅰ)設(shè)的斜率為1,求以
為直徑的圓的方程;
(Ⅱ)設(shè),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)?
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題15分)設(shè)拋物線和點
,.斜率為
的直線與拋物線
相交不同的兩個點
.若點
恰好為
的中點.
(1)求拋物線的方程,
(2) 拋物線上是否存在異于
的點
,使得經(jīng)過點
的圓和拋物線
在
處有相同的切線.若存在,求出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com