日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB是圓O的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
          (I)求證:平面PAC⊥平面PBC;
          (II)若AC=1,PA=1,求圓心O到平面PBC的距離.

          【答案】解:證明:由AB是圓的直徑得AC⊥BC,

          由PA⊥平面ABC,BC平面ABC,得PA⊥BC

          ∴BC⊥平面PAC,

          又∴BC平面PBC,

          所以平面PAC⊥平面PBC

          過A點(diǎn)作AD⊥PC于點(diǎn)D,則由(1)知AD⊥平面PBC,

          連BD,取BD的中點(diǎn)E,連OE,則OE∥AD,

          又AD⊥平面PBCOE⊥平面PBC,

          所以O(shè)E長(zhǎng)就是O到平面PBC的距離.

          由中位線定理得


          【解析】(1)證明AC⊥BC,PA⊥BC,然后證明BC⊥平面PAC,轉(zhuǎn)化證明平面PAC⊥平面PBC.(2)過A點(diǎn)作AD⊥PC于點(diǎn)D,連BD,取BD的中點(diǎn)E,連OE,說明OE長(zhǎng)就是O到平面PBC的距離,然后求解即可.
          【考點(diǎn)精析】關(guān)于本題考查的平面與平面垂直的判定,需要了解一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直才能得出正確答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) .

          (1)討論函數(shù)的單調(diào)性;

          (2)當(dāng)時(shí),證明:對(duì)任意的,有.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=BC=2AC=2. (Ⅰ)若D為AA1中點(diǎn),求證:平面B1CD⊥平面B1C1D;
          (Ⅱ)在AA1上是否存在一點(diǎn)D,使得二面角B1﹣CD﹣C1的大小為60°.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四棱錐S﹣ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD=2,E是邊SB的中點(diǎn).
          (1)求證:CE∥平面SAD;
          (2)求二面角D﹣EC﹣B的余弦值大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合A={a|一次函數(shù)y=(4a﹣1)x+b在R上是增函數(shù)},集合B=
          (1)求集合A,B;
          (2)設(shè)集合 ,求函數(shù)f(x)=x﹣ 在A∩C上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱錐A﹣BCD中,△ABC和△BCD所在平面互相垂直,且AB=CD=4,AC=4 ,CD=4 ,∠ACB=45°,E,F(xiàn)分別為MN的中點(diǎn).
          (1)求證:EF∥平面ABD;
          (2)求二面角E﹣BF﹣C的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】惠城某影院共有100個(gè)座位,票價(jià)不分等次.根據(jù)該影院的經(jīng)營(yíng)經(jīng)驗(yàn),當(dāng)每張標(biāo)價(jià)不超過10元時(shí),票可全部售出;當(dāng)每張票價(jià)高于10元時(shí),每提高1元,將有3張票不能售出.為了獲得更好的收益,需給影院定一個(gè)合適的票價(jià),符合的基本條件是: ①為方便找零和算帳,票價(jià)定為1元的整數(shù)倍;
          ②影院放映一場(chǎng)電影的成本費(fèi)用支出為575元,票房收入必須高于成本支出.
          用x(元)表示每張票價(jià),用y(元)表示該影院放映一場(chǎng)的凈收入(除去成本費(fèi)用支出后的收入).
          (Ⅰ)把y表示成x的函數(shù),并求其定義域;
          (Ⅱ)試問在符合基本條件的前提下,每張票價(jià)定為多少元時(shí),放映一場(chǎng)的凈收入最多?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】持續(xù)高溫使漳州市多地出現(xiàn)氣象干旱,城市用水緊張,為了宣傳節(jié)約用水,某人準(zhǔn)備在一片扇形區(qū)域(如圖3)上按照?qǐng)D4的方式放置一塊矩形ABCD區(qū)域宣傳節(jié)約用水,其中頂點(diǎn)B,C在半徑ON上,頂點(diǎn)A在半徑OM上,頂點(diǎn)D在 上,∠MON= ,ON=OM=10,m,設(shè)∠DON=θ,矩形ABCD的面積為S.
          (Ⅰ)用含θ的式子表示DC,OB的長(zhǎng)‘
          (Ⅱ)若此人布置1m2的宣傳區(qū)域需要花費(fèi)40元,試將S表示為θ的函數(shù),并求布置此矩形宣傳欄最多要花費(fèi)多少元錢?(精確到0.01)
          (參考數(shù)據(jù): ≈1.732, ≈1.414)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓心為C的圓經(jīng)過O(0,0))和A(4,0)兩點(diǎn),線段OA的垂直平分線和圓C交于M,N兩點(diǎn),且|MN|=2
          (1)求圓C的方程
          (2)設(shè)點(diǎn)P在圓C上,試問使△POA的面積等于2的點(diǎn)P共有幾個(gè)?證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案